Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Distracted driving-related accidents are a critical global issue, especially as road traffic increases in densely populated areas. To address the challenge of driver distraction, we introduce a novel dataset that supports the development of real-time monitoring and detection systems by capturing authentic driver behaviors. Collected in Ashulia, Dhaka, Bangladesh, in October 2024, this dataset includes images captured under real-world driving conditions within both private vehicles and public buses. The photos were taken using personal mobile phones, ensuring a realistic and diverse set of visual data.
This dataset spans a wide range of driving behaviors, including safe driving, turning, texting, talking on the phone, and other potentially risky behaviors, such as drowsy driving. By depicting these behaviors in everyday driving scenarios, the dataset serves as a valuable resource for training and evaluating models designed to detect unsafe driving practices in real-time.The dataset includes high-resolution photos taken inside public buses and personal cars in Ashulia, Dhaka, Bangladesh, under actual driving circumstances. The photographs, which were taken using the cameras on personal cell phones, offer a genuine and varied collection of visual information under normal driving circumstances. The following five behavioral classes comprise the dataset: I. Safe Driving: Images showing a driver who seems to be paying attention to the road, both hands on the wheel, and concentrated or 1 hand on the steering wheel and other on the gear stick. This is the perfect example of driving without distractions. II. Turning: Photographs that show drivers changing direction during turns by moving their heads or full bodies. This behavior is crucial for figuring out how focused the driver is on everyday tasks like rotating the steering wheel. III. Texting Phone: Pictures of drivers using their phones, whether it is to type messages or to interact with the screen. Since texting and driving is one of the main causes of distracted driving, this training is very important for identifying it. IV. Talking Phones: When drivers talk on their phones or hold them up to their ears while driving a vehicle. This category aids in identifying actions connected to phone talks, which are another frequent source of interruptions. V. Others: Contains any actions that go against safe driving practices, like drinking water or anything while driving, sleeping while driving, or talking with someone behind while driving. Relevant photos are included in each session, and they differ in terms of vehicle type and illumination to represent the variety of driving situations found in the real world. Because the images are unprocessed and unannotated, there is freedom in how machine learning applications pre-process them.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1. Overview
This repository contains datasets used to evaluate potential improvements to flood detectability afforded by combining data collected by Landsat, Sentinel-2, and Sentinel-1 for the first time globally. The datasets were produced as part of the manuscript "A multi-sensor approach for increased measurements of floods and their societal impacts from space" which is currently in review.
2. Dataset Descriptions
There are two datasets included here.
(a) A global grid of revisit periods of Landsat, Sentinel-1, Sentinel-2 Satellites and their combination [GlobalMedianRevisits.zip]
A global dataset of revisit periods of individual satellites and their combination based on a 0.5-degree resolution grid.
Revisit periods are defined as the time between two consecutive observations of a particular point on the surface, for the satellite missions Landsat, Sentinel-2 and Sentinel-1. The grid was created using ArcMap 10.8.1 and intersections of the grid were used to create points. For each individual point, average revisit times (i.e., to account for irregular revisits, downlink issues) were calculated for each individual satellite and the composite of the three satellites. Averaged revisit times for each of these points were calculated based on the number of image tiles that intersected a particular grid point with more than a 30-minute time difference between each other acquired between 01 Jan 2016 and 31 Dec 2020.
The following equation is used to calculate revisit periods:
Average revisit time for a grid point = (Number of days between 01 Jan 2016 and 31 Dec 2020 (1827)) / (Total Number of Images captured)
Only revisits occurring between 82.5 N and 55 S of land grid points are considered; Antarctica is omitted from analysis. For satellite missions that consist of two spacecraft orbiting simultaneously (Sentinel-1 A/B, and Sentinel-2 A/B), images acquired by both satellites were used in average revisit period calculation for a given grid point. Sum totals of image tiles of all three missions are used to calculate composite point-based revisit times.
(b) Average revisit periods of satellites for flood records in the DFO database [FloodInfo.zip]
Average Revisit Times of Landsat, Sentinel-1, Sentinel-2 and their ensemble are calculated for 5130 flood records in the Dartmouth Flood Observatory's (DFO) flood record database. These were appended to the already existing attributes of the database.
The Developer Services Review Program is designed to meet the special needs of owners, developers, architects and contractors working on moderately- to highly-complex construction or renovation projects. Eligible projects include high-rise buildings, mercantile buildings with more than 150,000 square feet, other occupancies with more than 80,000 square feet, buildings with foundations deeper than 12 feet, and residential projects that contain more than 25 units. This metric tracks the average number of days DOB takes to process individual Developer Services Permits, grouped by the week the permit was processed. The target average process time is within 89 days. Click here for more information about DOB’s Developer Services Program.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Newfane. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Newfane, while the Census reported a median income of $36,667 for all female workers aged 15 years and older, data for males in the same category was unavailable due to an insufficient number of sample observations.
Because income data for males was not available from the Census Bureau, conducting a comprehensive analysis of gender-based pay disparity in the village of Newfane was not possible.
- Full-time workers, aged 15 years and older: In Newfane, for full-time, year-round workers aged 15 years and older, the Census reported a median income of $65,469 for females, while data for males was unavailable due to an insufficient number of sample observations.As there was no available median income data for males, conducting a comprehensive assessment of gender-based pay disparity in Newfane was not feasible.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Newfane median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Daily Rolling Average Case, Death, and Hospitalization Rates’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/7acadb5f-3204-4ca3-8e83-2741d562f100 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
This is the place to look for important information about how to use this dataset, so please expand this box and read on!
This is the source data for some of the metrics available at https://www.chicago.gov/city/en/sites/covid-19/home/latest-data.html.
For all datasets related to COVID-19, see https://data.cityofchicago.org/browse?limitTo=datasets&sortBy=alpha&tags=covid-19.
This dataset is a companion to the COVID-19 Daily Cases and Deaths dataset (https://data.cityofchicago.org/d/naz8-j4nc). The major difference in this dataset is that the case, death, and hospitalization corresponding rates per 100,000 population are not those for the single date indicated. They are rolling averages for the seven-day period ending on that date. This rolling average is used to account for fluctuations that may occur in the data, such as fewer cases being reported on weekends, and small numbers. The intent is to give a more representative view of the ongoing COVID-19 experience, less affected by what is essentially noise in the data.
All rates are per 100,000 population in the indicated group, or Chicago, as a whole, for “Total” columns.
Only Chicago residents are included based on the home address as provided by the medical provider.
Cases with a positive molecular (PCR) or antigen test are included in this dataset. Cases are counted based on the date the test specimen was collected. Deaths among cases are aggregated by day of death. Hospitalizations are reported by date of first hospital admission. Demographic data are based on what is reported by medical providers or collected by CDPH during follow-up investigation.
Denominators are from the U.S. Census Bureau American Community Survey 1-year estimate for 2018 and can be seen in the Citywide, 2018 row of the Chicago Population Counts dataset (https://data.cityofchicago.org/d/85cm-7uqa).
All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects cases and deaths currently known to CDPH.
Numbers in this dataset may differ from other public sources due to definitions of COVID-19-related cases and deaths, sources used, how cases and deaths are associated to a specific date, and similar factors.
Data Source: Illinois National Electronic Disease Surveillance System, Cook County Medical Examiner’s Office, U.S. Census Bureau American Community Survey
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Burton township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Burton township, while the Census reported a median income of $38,750 for all female workers aged 15 years and older, data for males in the same category was unavailable due to an insufficient number of sample observations.
Because income data for males was not available from the Census Bureau, conducting a comprehensive analysis of gender-based pay disparity in the township of Burton township was not possible.
- Full-time workers, aged 15 years and older: In Burton township, for full-time, year-round workers aged 15 years and older, the Census reported a median income of $62,750 for females, while data for males was unavailable due to an insufficient number of sample observations.As there was no available median income data for males, conducting a comprehensive assessment of gender-based pay disparity in Burton township was not feasible.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Burton township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Greens Fork. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Greens Fork, the median income for all workers aged 15 years and older, regardless of work hours, was $31,250 for males and $38,523 for females.
Contrary to expectations, women in Greens Fork, women, regardless of work hours, earn a higher income than men, earning 1.23 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.
- Full-time workers, aged 15 years and older: In Greens Fork, among full-time, year-round workers aged 15 years and older, males earned a median income of $42,321, while females earned $44,167Contrary to expectations, in Greens Fork, women, earn a higher income than men, earning 1.04 dollars for every dollar earned by men. This analysis showcase a consistent trend of women outearning men, when working full-time or part-time in the town of Greens Fork.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Greens Fork median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Sedalia. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Sedalia, the median income for all workers aged 15 years and older, regardless of work hours, was $30,491 for males and $32,308 for females.
Contrary to expectations, women in Sedalia, women, regardless of work hours, earn a higher income than men, earning 1.06 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.
- Full-time workers, aged 15 years and older: In Sedalia, among full-time, year-round workers aged 15 years and older, males earned a median income of $48,750, while females earned $60,000Contrary to expectations, in Sedalia, women, earn a higher income than men, earning 1.23 dollars for every dollar earned by men. This analysis showcase a consistent trend of women outearning men, when working full-time or part-time in the town of Sedalia.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sedalia median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Fort Supply. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Fort Supply, while the Census reported a median income of $50,833 for all male workers aged 15 years and older, data for females in the same category was unavailable due to an insufficient number of sample observations.
Given the absence of income data for females from the Census Bureau, conducting a thorough analysis of gender-based pay disparity in the town of Fort Supply was not possible.
- Full-time workers, aged 15 years and older: In Fort Supply, among full-time, year-round workers aged 15 years and older, males earned a median income of $60,208, while females earned $55,625, resulting in a 8% gender pay gap among full-time workers. This illustrates that women earn 92 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Fort Supply.When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fort Supply median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Salisbury town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Salisbury town, the median income for all workers aged 15 years and older, regardless of work hours, was $40,673 for males and $28,958 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 29% between the median incomes of males and females in Salisbury town. With women, regardless of work hours, earning 71 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetown of Salisbury town.
- Full-time workers, aged 15 years and older: In Salisbury town, among full-time, year-round workers aged 15 years and older, males earned a median income of $51,544, while females earned $57,602Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.12 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Salisbury town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Grant township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Grant township, the median income for all workers aged 15 years and older, regardless of work hours, was $48,472 for males and $34,531 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 29% between the median incomes of males and females in Grant township. With women, regardless of work hours, earning 71 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetownship of Grant township.
- Full-time workers, aged 15 years and older: In Grant township, among full-time, year-round workers aged 15 years and older, males earned a median income of $49,792, while females earned $66,250Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.33 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grant township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Elk township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Elk township, the median income for all workers aged 15 years and older, regardless of work hours, was $38,226 for males and $26,574 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 30% between the median incomes of males and females in Elk township. With women, regardless of work hours, earning 70 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thetownship of Elk township.
- Full-time workers, aged 15 years and older: In Elk township, among full-time, year-round workers aged 15 years and older, males earned a median income of $56,875, while females earned $56,250, resulting in a 1% gender pay gap among full-time workers. This illustrates that women earn 99 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the township of Elk township.Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Elk township.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Elk township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Fleming township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Fleming township, while the Census reported a median income of $22,153 for all male workers aged 15 years and older, data for females in the same category was unavailable due to an insufficient number of sample observations.
Given the absence of income data for females from the Census Bureau, conducting a thorough analysis of gender-based pay disparity in the township of Fleming township was not possible.
- Full-time workers, aged 15 years and older: In Fleming township, for full-time, year-round workers aged 15 years and older, the Census Bureau did not report the median income for both males and females due to an insufficient number of sample observations.As income data for both males and females was unavailable, conducting a comprehensive analysis of gender-based pay disparity in the township of Fleming township was not possible.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fleming township median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Preston town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Preston town, the median income for all workers aged 15 years and older, regardless of work hours, was $33,589 for males and $31,771 for females.
Based on these incomes, we observe a gender gap percentage of approximately 5%, indicating a significant disparity between the median incomes of males and females in Preston town. Women, regardless of work hours, still earn 95 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Preston town, among full-time, year-round workers aged 15 years and older, males earned a median income of $43,813, while females earned $57,569Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.31 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Preston town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Junction City. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Junction City, the median income for all workers aged 15 years and older, regardless of work hours, was $35,250 for males and $29,531 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 16% between the median incomes of males and females in Junction City. With women, regardless of work hours, earning 84 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thevillage of Junction City.
- Full-time workers, aged 15 years and older: In Junction City, among full-time, year-round workers aged 15 years and older, males earned a median income of $51,833, while females earned $57,583Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.11 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Junction City median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in North Buena Vista. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In North Buena Vista, the median income for all workers aged 15 years and older, regardless of work hours, was $41,250 for males and $33,125 for females.
These income figures indicate a substantial gender-based pay disparity, showcasing a gap of approximately 20% between the median incomes of males and females in North Buena Vista. With women, regardless of work hours, earning 80 cents to each dollar earned by men, this income disparity reveals a concerning trend toward wage inequality that demands attention in thecity of North Buena Vista.
- Full-time workers, aged 15 years and older: In North Buena Vista, among full-time, year-round workers aged 15 years and older, males earned a median income of $55,000, while females earned $65,250Surprisingly, within the subset of full-time workers, women earn a higher income than men, earning 1.19 dollars for every dollar earned by men. This suggests that within full-time roles, womens median incomes significantly surpass mens, contrary to broader workforce trends.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Buena Vista median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Raymond. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Raymond, the median income for all workers aged 15 years and older, regardless of work hours, was $10,889 for males and $20,000 for females.
Contrary to expectations, women in Raymond, women, regardless of work hours, earn a higher income than men, earning 1.84 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.
- Full-time workers, aged 15 years and older: In Raymond, among full-time, year-round workers aged 15 years and older, males earned a median income of $29,527, while females earned $49,769Contrary to expectations, in Raymond, women, earn a higher income than men, earning 1.69 dollars for every dollar earned by men. This analysis showcase a consistent trend of women outearning men, when working full-time or part-time in the city of Raymond.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Raymond median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Martin. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Martin, the median income for all workers aged 15 years and older, regardless of work hours, was $28,750 for males and $41,250 for females.
Contrary to expectations, women in Martin, women, regardless of work hours, earn a higher income than men, earning 1.43 dollars for every dollar earned by men. This analysis indicates a significant shift in income dynamics favoring females.
- Full-time workers, aged 15 years and older: In Martin, for full-time, year-round workers aged 15 years and older, the Census reported a median income of $55,179 for females, while data for males was unavailable due to an insufficient number of sample observations.As there was no available median income data for males, conducting a comprehensive assessment of gender-based pay disparity in Martin was not feasible.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Martin median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564