In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
In 2021, the per capita income in San Francisco city was at 80,383 U.S. dollars. San Francisco was followed in this regard by Seattle and Washington, D.C. The most populated cities in the U.S. are ranked by per capita income in this statistic. While New York, New York had the highest population, San Francisco had the highest per capita income in 2021. The median household income in San Francisco in 2020 was 119,136 dollars, the highest among the most populated cities in the United States.
In the United States, city governments provide many services: they run public school districts, administer certain welfare and health programs, build roads and manage airports, provide police and fire protection, inspect buildings, and often run water and utility systems. Cities also get revenues through certain local taxes, various fees and permit costs, sale of property, and through the fees they charge for the utilities they run.
It would be interesting to compare all these expenses and revenues across cities and over time, but also quite difficult. Cities share many of these service responsibilities with other government agencies: in one particular city, some roads may be maintained by the state government, some law enforcement provided by the county sheriff, some schools run by independent school districts with their own tax revenue, and some utilities run by special independent utility districts. These governmental structures vary greatly by state and by individual city. It would be hard to make a fair comparison without taking into account all these differences.
This dataset takes into account all those differences. The Lincoln Institute of Land Policy produces what they call “Fiscally Standardized Cities” (FiSCs), aggregating all services provided to city residents regardless of how they may be divided up by different government agencies and jurisdictions. Using this, we can study city expenses and revenues, and how the proportions of different costs vary over time.
The dataset tracks over 200 American cities between 1977 and 2020. Each row represents one city for one year. Revenue and expenditures are broken down into more than 120 categories.
Values are available for FiSCs and also for the entities that make it up: the city, the county, independent school districts, and any special districts, such as utility districts. There are hence five versions of each variable, with suffixes indicating the entity. For example, taxes gives the FiSC’s tax revenue, while taxes_city, taxes_cnty, taxes_schl, and taxes_spec break it down for the city, county, school districts, and special districts.
The values are organized hierarchically. For example, taxes is the sum of tax_property (property taxes), tax_sales_general (sales taxes), tax_income (income tax), and tax_other (other taxes). And tax_income is itself the sum of tax_income_indiv (individual income tax) and tax_income_corp (corporate income tax) subcategories.
The revenue and expenses variables are described in this detailed table. Further documentation is available on the FiSC Database website, linked in References below.
All monetary data is already adjusted for inflation, and is given in terms of 2020 US dollars per capita. The Consumer Price Index is provided for each year if you prefer to use numbers not adjusted for inflation, scaled so that 2020 is 1; simply divide each value by the CPI to get the value in that year’s nominal dollars. The total population is also provided if you want total values instead of per-capita values.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su
When comparing residential water use as GPCD (gallons per capita per day) in the U.S., western states tend to have higher rates of water usage based on 2015 USGS data. For instance, the U.S. average GPCD was 83 and the state of Arizona was substantially higher at 146 GPCD. While USGS provides state and county water use data, this data layer records GPCD for Sample Cities in the Colorado River Basin. Cities were selected based on attributes from US Census Bureau population statistics for census-designated places. Sample City status determined by: 1) a population base under 300,000, and 2) average population growth rate over 8 percent between 2008-2015.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Central America. The data is about countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Middle Africa. The data is about countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Africa. The data is about countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Georgia. The data is filtered where the date is 2021. The data is about countries per year.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Per capita values are calculated by dividing the estimated population into total revenues per city, per fiscal year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population. The data is filtered where the date is 2021. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Source:
Creator: Michael Redmond (redmond '@' lasalle.edu); Computer Science; La Salle University; Philadelphia, PA, 19141, USA -- culled from 1990 US Census, 1995 US FBI Uniform Crime Report, 1990 US Law Enforcement Management and Administrative Statistics Survey, available from ICPSR at U of Michigan. -- Donor: Michael Redmond (redmond '@' lasalle.edu); Computer Science; La Salle University; Philadelphia, PA, 19141, USA -- Date: July 2009
Data Set Information:
Many variables are included so that algorithms that select or learn weights for attributes could be tested. However, clearly unrelated attributes were not included; attributes were picked if there was any plausible connection to crime (N=122), plus the attribute to be predicted (Per Capita Violent Crimes). The variables included in the dataset involve the community, such as the percent of the population considered urban, and the median family income, and involving law enforcement, such as per capita number of police officers, and percent of officers assigned to drug units.
The per capita violent crimes variable was calculated using population and the sum of crime variables considered violent crimes in the United States: murder, rape, robbery, and assault. There was apparently some controversy in some states concerning the counting of rapes. These resulted in missing values for rape, which resulted in incorrect values for per capita violent crime. These cities are not included in the dataset. Many of these omitted communities were from the midwestern USA.
Data is described below based on original values. All numeric data was normalized into the decimal range 0.00-1.00 using an Unsupervised, equal-interval binning method. Attributes retain their distribution and skew (hence for example the population attribute has a mean value of 0.06 because most communities are small). E.g. An attribute described as 'mean people per household' is actually the normalized (0-1) version of that value.
The normalization preserves rough ratios of values WITHIN an attribute (e.g. double the value for double the population within the available precision - except for extreme values (all values more than 3 SD above the mean are normalized to 1.00; all values more than 3 SD below the mean are normalized to 0.00)).
However, the normalization does not preserve relationships between values BETWEEN attributes (e.g. it would not be meaningful to compare the value for whitePerCap with the value for blackPerCap for a community)
A limitation was that the LEMAS survey was of the police departments with at least 100 officers, plus a random sample of smaller departments. For our purposes, communities not found in both census and crime datasets were omitted. Many communities are missing LEMAS data.
Attribute Information:
'(125 predictive, 4 non-predictive, 18 potential goal) ', ' communityname: Community name - not predictive - for information only (string) ', ' state: US state (by 2 letter postal abbreviation)(nominal) ', ' countyCode: numeric code for county - not predictive, and many missing values (numeric) ', ' communityCode: numeric code for community - not predictive and many missing values (numeric) ', ' fold: fold number for non-random 10 fold cross validation, potentially useful for debugging, paired tests - not predictive (numeric - integer) ', ' population: population for community: (numeric - expected to be integer) ', ' householdsize: mean people per household (numeric - decimal) ', ' racepctblack: percentage of population that is african american (numeric - decimal) ', ' racePctWhite: percentage of population that is caucasian (numeric - decimal) ', ' racePctAsian: percentage of population that is of asian heritage (numeric - decimal) ', ' racePctHisp: percentage of population that is of hispanic heritage (numeric - decimal) ', ' agePct12t21: percentage of population that is 12-21 in age (numeric - decimal) ', ' agePct12t29: percentage of population that is 12-29 in age (numeric - decimal) ', ' agePct16t24: percentage of population that is 16-24 in age (numeric - decimal) ', ' agePct65up: percentage of population that is 65 and over in age (numeric - decimal) ', ' numbUrban: number of people living in areas classified as urban (numeric - expected to be integer) ', ' pctUrban: percentage of people living in areas classified as urban (numeric - decimal) ', ' medIncome: median household income (numeric - may be integer) ', ' pctWWage: percentage of households with wage or salary income in 1989 (numeric - decimal) ', ' pctWFarmSelf: percentage of households with farm or self employment income in 1989 (numeric - decimal) ', ' pctWInvInc: percentage of households with investment / rent income in 1989 (numeric - decimal) ', ' pctWSocSec: percentage of households with social security income in 1989 (numeric - decimal) ', ' pctWPubAsst: pe...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Niger. The data is filtered where the date is 2021. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in St. Kitts and Nevis. The data is filtered where the date is 2021. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Japan. The data is filtered where the date is 2021. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Ireland. The data is filtered where the date is 2021. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Oceania. The data is about countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Suriname. The data is filtered where the date is 2021. The data is about countries per year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays health expenditure per capita (current US$) by capital city using the aggregation average, weighted by population in Tuvalu. The data is filtered where the date is 2021. The data is about countries per year.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.