Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for PRECIPITATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 53 countries was 1004 mm per year. The highest value was in Sao Tome and Principe: 3200 mm per year and the lowest value was in Egypt: 18 mm per year. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average Rainfall for the Months (June to September) from 2010 to 2019
Average Annual Rainfall, Africa, 1960-90, millimeters per year. Data from CCAFS/ILRI. Map published in Atlas of African Agriculture Research & Development (K. Sebastian (Ed.) 2014). p.38-39 Rainfall and Rainfall Variability. Contributor: Philip Thornton.For more information: http://agatlas.org/contents/rainfall-and-rainfall-variability/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Precipitation in Central African Republic decreased to 1319.98 mm in 2024 from 1400.99 mm in 2023. This dataset includes a chart with historical data for Central African Republic Average Precipitation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Precipitation in South Africa decreased to 417.47 mm in 2024 from 495.09 mm in 2023. This dataset includes a chart with historical data for South Africa Average Precipitation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Central African Republic CF: Average Precipitation in Depth data was reported at 1,343.000 mm/Year in 2020. This stayed constant from the previous number of 1,343.000 mm/Year for 2019. Central African Republic CF: Average Precipitation in Depth data is updated yearly, averaging 1,343.000 mm/Year from Dec 1961 (Median) to 2020, with 60 observations. The data reached an all-time high of 1,343.000 mm/Year in 2020 and a record low of 1,343.000 mm/Year in 2020. Central African Republic CF: Average Precipitation in Depth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Central African Republic – Table CF.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Average precipitation is the long-term average in depth (over space and time) of annual precipitation in the country. Precipitation is defined as any kind of water that falls from clouds as a liquid or a solid.;Food and Agriculture Organization, electronic files and web site.;;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 47 countries was 1113 mm per year. The highest value was in Sao Tome and Principe: 3200 mm per year and the lowest value was in Mauritania: 92 mm per year. The indicator is available from 1961 to 2021. Below is a chart for all countries where data are available.
https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/BAR411https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/BAR411
Result of a long experience in cooperation with the African meteorological departments and of the management of data bases, this map displays the annual rainfalls over a 60-year period. Maps representing rainfall over the whole African continent are rare, and a map dealing with observed rainfall over such a long period has never been released. Measurements of almost 6,000 raingauges were used for the calculation of mean values. This dataset contains in shapefiles format ArcGis : 1-isohyets of the annual Rainfall Map of Africa 2-isohyets that show the shifting of the isohyetal lines on the small map . Grids of rainfall at a step of half square degree and at a monthly time step are provided on the website of SIEREM (Environmental Information System for Water Resources and Modelling). Fruit d'une longue expérience de coopération avec les services climatologiques africains et de gestion de bases de données, cette carte affiche les pluies annuelles sur une période de 60 ans. Rares sont les cartes représentant les pluies observées sur la totalité du continent africain, et inédite une carte traitant de ce sujet sur une période aussi longue. Les mesures de près de 6 000 postes ont été utilisées pour le calcul des valeurs moyennes. Tous les fichiers de données sont au format ArcGIS (shapefiles) et contiennent : 1- Isohyètes de la carte des pluies annuelles en Afrique 2- Isohyètes qui montrent le déplacement des isohyètes sur la période Des grilles de pluies au pas du demi-degré carré et au pas de temps mensuel sont mises à disposition sur le site de SIEREM (Système d'informations environnementales pour les ressources en eau et leur modélisation).
Water is an essential ingredient to life on Earth. In its three phases (solid, liquid, and gas), water continuously cycles within the Earth and atmosphere to create significant parts of our planet’s climate system, such as clouds, rivers, vegetation, oceans, and glaciers. Precipitation is a part of the water cycle, where water particles fall from clouds in the form of rain, sleet, snow, ice crystals, or hail. So how does precipitation form? As water on Earth’s surface evaporates it changes from liquid to gas and rises into the atmosphere. Because air cools as altitude increases, the vapor rises to a point in the atmosphere where it cools enough to condense into liquid water or freeze into ice, which forms a cloud. Water vapor continues to condense and stick to other water droplets in the cloud until the weight of the accumulated water becomes too heavy for the cloud to hold. If the air in the cloud is above freezing (0 degrees Celsius or 32 degrees Fahrenheit), the water falls to the Earth as rain. If the air in the cloud is below freezing, ice crystals form and it snows if the air between the cloud and the ground stays below 0 degrees Celsius (32 degrees Fahrenheit). If a snowflake falls through a warmer part of a cloud, it can get coated in water, then refrozen multiple times as it circulates around the cloud. This forms heavy pellets of ice, called hail, that can fall from the sky at speeds estimated between 14 and 116 kmph (9 and 72 mph) depending on its size. A hailstone can range from the size of a pea (approximately 0.6 cm or 0.25 inches) to a golf ball (approximately 4.5 cm or 1.75 inches), and sometimes even reach the size of a softball (approximately 10 cm or 4 inches).Precipitation doesn’t fall in the same amounts throughout the world. The presence of mountains, global winds, and the unequal distribution of land and sea cause some parts of the world to receive greater amounts of precipitation compared with others. Areas with rising moist air generally indicate regions with high precipitation. According to the Köppen Climate Classification System, tropical wet and tropical monsoon climates receive annual precipitation of 150 cm (59 inches) or greater. Tropical wet regions, where rain occurs year-round, are found near the equator in central Africa, the Amazon rainforest, and southern India. Monsoons are storms with large patterns of wind and heavy rain that can span over a continent. Tropical monsoon climates are located mainly in Southeast Asia and areas around the Pacific Ocean, where annual rainfall is equal to or greater than areas with a tropical wet climate. Here, intense monsoon rains fall during the three hottest months of the year, which are usually between June and October. Snow and ice, which are most common in high altitudes and latitudes, cover most of the Earth’s polar regions. High altitude regions of the Andes, Tibetan Plateau, and the Rocky Mountains maintain some amount of snow cover year-round.Over the next century, it is predicted warming global temperatures will increase the temperature of the ocean and increase the speed of the water cycle. With a quicker rate of evaporation, there will be more water in the atmosphere, allowing clouds to produce heavier precipitation and more intense storms. Although storms would be more intense in wetter regions, increased evaporation could also lead to extreme drought in drier areas of the world. This would greatly affect farmers who grow crops in dry locations like Southern California or Kansas.This map layer shows Earth's mean precipitation (measured in centimeters per month) averaged from 1981 to 2012 as calculated but the Copernicus Climate Change Service. The data was collected from the Copernicus satellite and validated with precipitation measurements from weather stations. Scientists averaged all of the amounts (originally collected in meters) occurring each month together, and they calculated the average of each month over 30 years to create this map.
This map features the GLDAS total monthly precipitation modeled globally by NASA. The map shows the monthly precipitation for the period of May 2016 to May 2018, focused on Africa. You can click the Play button on the time slider to see precipitation over time.Great parts of Northern Africa and Southern Africa, as well as the whole Horn of Africa, mainly have a hot desert climate, or a hot semi-arid climate for the wetter locations. The equatorial region near the Intertropical Convergence Zone is the wettest portion of the continent. Annually, the rain belt across the country marches northward into Sub-Saharan Africa by August, then moves back southward into south-central Africa by March.Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. A complete list of the model inputs can be seen here, and the output data (in GRIB format) is available here.Phenomenon Mapped: PrecipitationUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.By applying the "Calculate Anomaly" processing template, it is also possible to view these data in terms of deviation from the mean, instead of total evapotranspiration. Mean evapotranspiration for a given month is calculated over the entire period of record - 2000 to present.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is eight years.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter, or by applying the relevant raster function. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.
Average annual rainfall in Djibouti, Eritrea, Ethiopia, Kenya, Somalia, Sudan and Uganda.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa: Precipitation, mm per year: The latest value from 2021 is 495 mm per year, unchanged from 495 mm per year in 2020. In comparison, the world average is 1168 mm per year, based on data from 178 countries. Historically, the average for South Africa from 1961 to 2021 is 495 mm per year. The minimum value, 495 mm per year, was reached in 1961 while the maximum of 495 mm per year was recorded in 1961.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a 35+ year quasi-global rainfall data set. It is a gridded rainfall time series for trend analysis and seasonal drought monitoring, spans 50°S-50°N (and all longitudes) and ranges from 1981 to near-present. The anomaly refers to the difference between current rainfall and the average rainfall that occurred between 1981 and 2010 in millimeters. For more information visit the CHIRPS site. This dataset contains the latest available CHIRPS anomaly data. The full list of data available is available from USGS for Mar-May data, Oct-Dec data, and others. Additionally, subnational statistics (mean, min, max) have been calculated for Ethiopia, Kenya, and Somalia and are available in the csv resource.
Mean Annual Precipitation [mm/year] across West Africa using the Rainfall Estimate dataset.
The CRU Time Series 4.05 dataset was developed and has been subsequently updated, improved and maintained with support from a number of funders, principally the UK's Natural Environment Research Council (NERC) and the US Department of Energy. Long-term support is currently provided by the UK National Centre for Atmospheric Science (NCAS), a NERC collaborative centre. Current gridded products (CRU TS) are presented either as ASCII grids, or in NetCDF format. The gridding process used in Brohan et al.. (2006) and earlier publications assigns each station to the 5 degree latitude/longitude box within which it is located. The gridding then simply averages all available station temperatures (as anomalies from 1961-90) within each grid box for each month from 1851. No account is taken of the station's elevation or location within the grid box (anomalies show little consistent dependence on altitude). A more up-to-date location for a station is not important for the gridding, unless a site change were to move the station to an adjacent grid box. In this instance, the data was derived as a subset of the original dataset. CRU publishes the data in NetCDF file format, however for data visualisation purposes the datasets was tranformed into tidy tables, represented in the South African Risk and Vulnerability Atlas (SARVA) by the South African Environmental Observation Network's uLwazi Node. Citation: University of East Anglia Climatic Research Unit; Harris, I.C.; Jones, P.D.; Osborn, T. (2021): CRU TS4.05: Climatic Research Unit (CRU) Time-Series (TS) version 4.05 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2020). NERC EDS Centre for Environmental Data Analysis, 2021. https://catalogue.ceda.ac.uk/uuid/c26a65020a5e4b80b20018f148556681
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
South Africa ZA: Average Precipitation in Depth data was reported at 495.000 mm/Year in 2014. This stayed constant from the previous number of 495.000 mm/Year for 2012. South Africa ZA: Average Precipitation in Depth data is updated yearly, averaging 495.000 mm/Year from Dec 1962 (Median) to 2014, with 12 observations. The data reached an all-time high of 495.000 mm/Year in 2014 and a record low of 495.000 mm/Year in 2014. South Africa ZA: Average Precipitation in Depth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank.WDI: Land Use, Protected Areas and National Wealth. Average precipitation is the long-term average in depth (over space and time) of annual precipitation in the country. Precipitation is defined as any kind of water that falls from clouds as a liquid or a solid.; ; Food and Agriculture Organization, electronic files and web site.; ;
Spatial distribution of annual precipitation interpreted as rainfall runoff to fill fish ponds. Mean annual precipitation data for Africa were obtained from UNEP/GRID in Nairobi and was developed for the Global Assessment of Soil Degradation (GLASOD) using data from 1951-1980.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for PRECIPITATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The Microwave InfraRed Algorithm (MIRA) is used to produce an imagery data set of daily mean rain rates at 0.1 degree spatial resolution over southern Africa for the period 1993-2001. MIRA combines passive microwave (PMW) from the Special Sensor Microwave/Imager (SSM/I) on board the DMSP F10 and F14 satellites at a resolution of 0.5 degrees and infrared (IR) data from the Meteosat 4, 5, 6, and 7 satellites in 2-hour slots at a resolution of 5 km. This approach accounts for the limitations of both data types in estimating precipitation. Rainfall estimates are produced at the high spatial and temporal frequency of the IR data using rainfall information from the PMW data. An IR/rain rate relationship, variable in space and time, is derived from coincident observations of IR and PMW rain rate (accumulated over a calibration _domain) using the probability matching method. The IR/rain rate relationship is then applied to IR imagery at full temporal resolution. The results presented here are the daily means of those derived rain rates at 0.1 degree spatial resolution.The rainfall data sets are flat binary images with no headers. They are compressed band sequential (bsq) files that contain all of the daily images for the given year. Each image is an array of 341 lines, each with 401 binary floating-point numbers, containing rainfall at 0.1 degree resolution for the area 10 to 50 degrees longitude and 0 to -34 degrees latitude. The number of band sequential images in each annual file and the associated dates can be found in the file MIRA_data_dates.csv.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for PRECIPITATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.