76 datasets found
  1. Annual precipitation in the United States 2024, by state

    • statista.com
    • ai-chatbox.pro
    Updated Feb 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual precipitation in the United States 2024, by state [Dataset]. https://www.statista.com/statistics/1101518/annual-precipitation-by-us-state/
    Explore at:
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, Louisiana recorded 71.25 inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only 9.53 inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of 0.20 inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.

  2. T

    United States Average Precipitation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). United States Average Precipitation [Dataset]. https://tradingeconomics.com/united-states/precipitation
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    United States
    Description

    Precipitation in the United States increased to 735.83 mm in 2023 from 707.98 mm in 2022. This dataset includes a chart with historical data for the United States Average Precipitation.

  3. Historical annual temperature (CONUS) (Image Service)

    • catalog.data.gov
    • gimi9.com
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical annual temperature (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-temperature-conus-image-service-cad29
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  4. U.S. cities with the highest annual precipitation 1981-2010

    • statista.com
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. cities with the highest annual precipitation 1981-2010 [Dataset]. https://www.statista.com/statistics/1039746/us-cities-with-the-most-precipitation/
    Explore at:
    Dataset updated
    Jan 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1981 - 2010
    Area covered
    United States
    Description

    The majority of the wettest cities in the United States are located in the Southeast. The major city with the most precipitation is New Orleans, Louisiana, which receives an average of 1592 millimeters (62.7 inches) of precipitation every year, based on an average between 1981 and 2010.

  5. a

    North America Annual Precipitation

    • hub.arcgis.com
    • climat.esri.ca
    • +2more
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d4b81cb2dc4f4b938964aa1eb9b4b9a9
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License
    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  6. EnviroAtlas - Average Annual Precipitation 1981-2010 by HUC12 for the...

    • s.cnmilf.com
    • gimi9.com
    • +1more
    Updated Apr 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Average Annual Precipitation 1981-2010 by HUC12 for the Conterminous United States [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/enviroatlas-average-annual-precipitation-1981-2010-by-huc12-for-the-conterminous-united-states3
    Explore at:
    Dataset updated
    Apr 20, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    Contiguous United States, United States
    Description

    This EnviroAtlas dataset provides the average annual precipitation by 12-digit Hydrologic Unit (HUC). The values were estimated from maps produced by the PRISM Climate Group, Oregon State University. The original data was at the scale of 800 m grid cells representing average precipitation from 1981-2010 in mm. The data was converted to inches of precipitation and then zonal statistics were estimated for a final value of average annual precipitation for each 12 digit HUC. For more information about the original dataset please refer to the PRISM website at http://www.prism.oregonstate.edu/. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. d

    30-Year (1990-2019) Annual Average of DAYMET Precipitation and Temperature...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). 30-Year (1990-2019) Annual Average of DAYMET Precipitation and Temperature for North America [Dataset]. https://catalog.data.gov/dataset/30-year-1990-2019-annual-average-of-daymet-precipitation-and-temperature-for-north-america
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    North America
    Description

    This metadata record describes the 30-year annual average of precipitation in millimeters (mm) and temperature (Celsius) during the period 1990–2019 for North America. The source data were produced by and acquired from DAYMET daily climate data (2020) and presented here as a series of two 1-kilometer resolution GeoTIFF files. An open source python code file used to process the data is also included.

  8. U

    Daily time series of surface water input from rainfall, rain on snow, and...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Hammond, Daily time series of surface water input from rainfall, rain on snow, and snowmelt for the Conterminous United States from 1990 to 2023, as well as annual series of input seasonality, precipitation seasonality, and average rainfall, rain on snow, and snowmelt rates [Dataset]. http://doi.org/10.5066/P9JWJPNC
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    John Hammond
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Oct 1, 1990 - Sep 30, 2023
    Area covered
    United States
    Description

    This data release contains daily gridded data reflecting surface water input from rainfall, rain on snow (mixed), and snowmelt for the conterminous United States for water years 1990 to 2023 (1990/10/01 to 2023/09/30). This release also contains annual estimates of gridded input seasonality (an index reflecting whether surface water input occurs within a concentrated period or is equally distributed throughout the year), precipitation seasonality, average snowmelt, rainfall and rain on snow rates, and finally, annual totals of each input type. Average snowmelt, rainfall and rain on snow rates were computed using days where values were greater than zero. Daily data were generated using precipitation input from the gridMET dataset (Abatzoglou, 2013) and the University of Arizona snow water equivalent product (Broxton et al., 2019). Abatzoglou, J. T. (2013), Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33: 121–131. ...

  9. Historical annual precipitation (Alaska) (Image Service)

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +3more
    bin
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Historical annual precipitation (Alaska) (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Historical_annual_precipitation_Alaska_Image_Service_/25973239
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  10. United States of America Average precipitation in depth

    • knoema.com
    csv, json, sdmx, xls
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Knoema (2025). United States of America Average precipitation in depth [Dataset]. https://knoema.com/atlas/United-States-of-America/topics/Water/Precipitation/Average-precipitation-in-depth
    Explore at:
    sdmx, xls, csv, jsonAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Knoemahttp://knoema.com/
    Time period covered
    2010 - 2021
    Area covered
    United States
    Variables measured
    Average precipitation in depth
    Description

    Average precipitation in depth of United States of America remained stable at 715 mm per year over the last 10 years. Long-term average (over space and time) of annual endogenous precipitation (produced in the country) in depth

  11. U

    United States US: Average Precipitation in Depth

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Average Precipitation in Depth [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-average-precipitation-in-depth
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1962 - Dec 1, 2014
    Area covered
    United States
    Description

    United States US: Average Precipitation in Depth data was reported at 715.000 mm/Year in 2014. This stayed constant from the previous number of 715.000 mm/Year for 2012. United States US: Average Precipitation in Depth data is updated yearly, averaging 715.000 mm/Year from Dec 1962 (Median) to 2014, with 12 observations. The data reached an all-time high of 715.000 mm/Year in 2014 and a record low of 715.000 mm/Year in 2014. United States US: Average Precipitation in Depth data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Land Use, Protected Areas and National Wealth. Average precipitation is the long-term average in depth (over space and time) of annual precipitation in the country. Precipitation is defined as any kind of water that falls from clouds as a liquid or a solid.; ; Food and Agriculture Organization, electronic files and web site.; ;

  12. U.S. Climate Normals 2020: U.S. Annual/Seasonal Climate Normals (1991-2020)

    • catalog.data.gov
    • ncei.noaa.gov
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Centers for Environmental Information/NOAA (Principal Investigator) (2023). U.S. Climate Normals 2020: U.S. Annual/Seasonal Climate Normals (1991-2020) [Dataset]. https://catalog.data.gov/dataset/u-s-climate-normals-2020-u-s-annual-seasonal-climate-normals-1991-20201
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Annual/Seasonal Climate Normals for 1991 to 2020 are 30-year averages of meteorological parameters that provide users the information needed to understand typical climate conditions for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Annual/Seasonal Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs), lengths of growing seasons, probabilities of first or last temperature threshold exceedances. All data utilized in the computation of the 1991-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily and -Monthly datasets. Temperatures were homogenized, adjusted for time-of-observation, and made serially complete where possible based on information from nearby stations. Precipitation totals were also made serially complete where possible based using nearby stations. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.

  13. Average annual precipitation - Business Environment Profile

    • ibisworld.com
    Updated Jan 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Average annual precipitation - Business Environment Profile [Dataset]. https://www.ibisworld.com/united-states/bed/average-annual-precipitation/489
    Explore at:
    Dataset updated
    Jan 26, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Description

    Annual average precipitation represents the average total rainfall seen across the United States in each year. Data is sourced from the National Oceanic and Atmospheric Administration's National Center for Environmental information.

  14. d

    Data from: Attributes for NHDPlus Catchments (Version 1.1) for the...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000 [Dataset]. https://catalog.data.gov/dataset/attributes-for-nhdplus-catchments-version-1-1-for-the-conterminous-united-states-30-y-1971-131eb
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, Contiguous United States
    Description

    This data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Precipitation, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  15. s

    Western US Mean Annual Precipitation

    • cinergi.sdsc.edu
    Updated Jan 1, 1900
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wetlands Reserve Program (1900). Western US Mean Annual Precipitation [Dataset]. http://cinergi.sdsc.edu/geoportal/rest/metadata/item/e7dbd0572a684862aeb2cf2f95e2eb6a/html
    Explore at:
    Dataset updated
    Jan 1, 1900
    Authors
    Wetlands Reserve Program
    Area covered
    Description

    Vector dataset provides derived average monthly precipitation according to a model using point precipitation and elevation data for the 30-year period of 1961-1990.

  16. d

    Average Annual Precipitation (PRISM model) 1961 - 1990

    • search.dataone.org
    • catalog.data.gov
    • +1more
    Updated Dec 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris Daly, Spatial Climate Analysis Service; George Taylor, the Oregon Climate Service at Oregon State University (2016). Average Annual Precipitation (PRISM model) 1961 - 1990 [Dataset]. https://search.dataone.org/view/c454b82d-4d5e-4cf2-9528-f43fce2584d4
    Explore at:
    Dataset updated
    Dec 1, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Chris Daly, Spatial Climate Analysis Service; George Taylor, the Oregon Climate Service at Oregon State University
    Time period covered
    Jan 1, 1961 - Dec 31, 1990
    Area covered
    Variables measured
    FID, AREA, Area, RANGE, Range, Shape, PERIMETER, Perimeter, PRISM0M020
    Description

    This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1961-1990. Parameter-elevation Regressions on Independent Slopes Model (PRISM) derived raster data is the underlying data set from which the polygons and vectors were created. PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of annual, monthly and event-based climatic parameters.

  17. U.S. Hourly Precipitation Data

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +6more
    csv, dat, kmz
    Updated Oct 1951
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (NCEI) (1951). U.S. Hourly Precipitation Data [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00313
    Explore at:
    csv, dat, kmzAvailable download formats
    Dataset updated
    Oct 1951
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Time period covered
    Jan 1, 1940 - Dec 31, 2013
    Area covered
    Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Puerto Rico, Ocean > Pacific Ocean > Central Pacific Ocean > American Samoa, Geographic Region > Equatorial, Ocean > Pacific Ocean > Central Pacific Ocean > Hawaiian Islands, Geographic Region > Mid-Latitude, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Palau, Geographic Region > Polar, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Guam, Ocean > Pacific Ocean > Western Pacific Ocean > Micronesia > Marshall Islands, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Virgin Islands
    Description

    Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.

  18. U.S. Annual Climatological Summaries

    • ncei.noaa.gov
    • datadiscoverystudio.org
    • +2more
    csv, dat, kmz, pdf
    Updated Jun 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce (2023). U.S. Annual Climatological Summaries [Dataset]. https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00040
    Explore at:
    csv, kmz, pdf, datAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Authors
    DOC/NOAA/NESDIS/NCDC > National Climatic Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Time period covered
    Jan 1, 1831 - Present
    Area covered
    Pacific Ocean, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Puerto Rico, Ocean > Atlantic Ocean > North Atlantic Ocean > Caribbean Sea > Virgin Islands, geographic bounding box, Pacific Ocean, Pacific Ocean, Pacific Ocean, Pacific Ocean, Pacific Ocean, United States
    Description

    Annual Climatological Summary contains historical monthly and annual summaries for over 8000 U.S. locations. Observing stations are located in the United States of America, U.S. Virgin Islands, Puerto Rico, and Pacific islands of the U.S. and associated nations. The major parameters are: monthly mean maximum, mean minimum and mean temperatures; monthly total precipitation and snowfall; departure from normal of the mean temperature and total precipitation; monthly heating and cooling degree days; number of days that temperatures and precipitation are above or below certain thresholds; and extreme daily temperature and precipitation amounts. Annual Climatological Summary is derived from the NCDC Summary of the Month dataset (DSI-3220).

  19. Historical and future temperature trends (Map Service)

    • catalog.data.gov
    • gimi9.com
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future temperature trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-temperature-trends-map-service-e00ae
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  20. Major U.S. cities with the most rainy days 1981-2010

    • statista.com
    Updated Dec 31, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2011). Major U.S. cities with the most rainy days 1981-2010 [Dataset]. https://www.statista.com/statistics/226747/us-cities-with-the-most-rainy-days/
    Explore at:
    Dataset updated
    Dec 31, 2011
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1981 - 2010
    Area covered
    United States
    Description

    This statistic shows the ten major U.S. cities with the most rainy days per year between 1981 and 2010. Rochester, New York, had an average of about 167 days per year with precipitation. The sunniest city in the U.S. was Phoenix, Arizona, with an average of 85 percent of sunshine per day.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Annual precipitation in the United States 2024, by state [Dataset]. https://www.statista.com/statistics/1101518/annual-precipitation-by-us-state/
Organization logo

Annual precipitation in the United States 2024, by state

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 2, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
United States
Description

In 2024, Louisiana recorded 71.25 inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only 9.53 inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of 0.20 inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.

Search
Clear search
Close search
Google apps
Main menu