Typical annual rainfall data were summarized from monthly precipitation data and provided in millimeters (mm). The monthly climate data for global land areas were generated from a large network of weather stations by the WorldClim project. Precipitation and temperature data were collected from the weather stations and aggregated across a target temporal range of 1970-2000.
Weather station data (between 9,000 and 60,000 stations) were interpolated using thin-plate splines with covariates including elevation, distance to the coast, and MODIS-derived minimum and maximum land surface temperature. Spatial interpolation was first done in 23 regions of varying size depending on station density, instead of the common approach to use a single model for the entire world. The satellite imagery data were most useful in areas with low station density. The interpolation technique allowed WorldClim to produce high spatial resolution (approximately 1 km2) raster data sets.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
1km gridded Rainfall map - interpolation over DEM. Rainfall data scattered well except Western and Southern Highlands Provinces. With the Digicel Towers (mounted with rainfall instruments) network nation-wide. The Rainfall Map can be improved.
https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/
Rain is vital for life – it supplies the water we need to drink and to grow our food, keeps our ecosystems healthy, and supplies our electricity. New Zealand’s mountainous terrain and location in the roaring forties mean rainfall varies across the country. Changes in rainfall amount or timing can significantly affect agriculture, energy, recreation, and the environment. For example, an increase or decrease of rainfall in spring can have marked effects on crops or fish populations.
More information on this dataset and how it relates to our environmental reporting indicators and topics can be found in the attached data quality pdf.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Contained within the 4th Edition (1974) of the Atlas of Canada is a collection of six maps. Each map shows the average monthly precipitation for April, May, June, July, August and September.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
Average Annual Rainfall, Africa, 1960-90, millimeters per year. Data from CCAFS/ILRI. Map published in Atlas of African Agriculture Research & Development (K. Sebastian (Ed.) 2014). p.38-39 Rainfall and Rainfall Variability. Contributor: Philip Thornton.For more information: http://agatlas.org/contents/rainfall-and-rainfall-variability/
Water is an essential ingredient to life on Earth. In its three phases (solid, liquid, and gas), water continuously cycles within the Earth and atmosphere to create significant parts of our planet’s climate system, such as clouds, rivers, vegetation, oceans, and glaciers. Precipitation is a part of the water cycle, where water particles fall from clouds in the form of rain, sleet, snow, ice crystals, or hail. So how does precipitation form? As water on Earth’s surface evaporates it changes from liquid to gas and rises into the atmosphere. Because air cools as altitude increases, the vapor rises to a point in the atmosphere where it cools enough to condense into liquid water or freeze into ice, which forms a cloud. Water vapor continues to condense and stick to other water droplets in the cloud until the weight of the accumulated water becomes too heavy for the cloud to hold. If the air in the cloud is above freezing (0 degrees Celsius or 32 degrees Fahrenheit), the water falls to the Earth as rain. If the air in the cloud is below freezing, ice crystals form and it snows if the air between the cloud and the ground stays below 0 degrees Celsius (32 degrees Fahrenheit). If a snowflake falls through a warmer part of a cloud, it can get coated in water, then refrozen multiple times as it circulates around the cloud. This forms heavy pellets of ice, called hail, that can fall from the sky at speeds estimated between 14 and 116 kmph (9 and 72 mph) depending on its size. A hailstone can range from the size of a pea (approximately 0.6 cm or 0.25 inches) to a golf ball (approximately 4.5 cm or 1.75 inches), and sometimes even reach the size of a softball (approximately 10 cm or 4 inches).Precipitation doesn’t fall in the same amounts throughout the world. The presence of mountains, global winds, and the unequal distribution of land and sea cause some parts of the world to receive greater amounts of precipitation compared with others. Areas with rising moist air generally indicate regions with high precipitation. According to the Köppen Climate Classification System, tropical wet and tropical monsoon climates receive annual precipitation of 150 cm (59 inches) or greater. Tropical wet regions, where rain occurs year-round, are found near the equator in central Africa, the Amazon rainforest, and southern India. Monsoons are storms with large patterns of wind and heavy rain that can span over a continent. Tropical monsoon climates are located mainly in Southeast Asia and areas around the Pacific Ocean, where annual rainfall is equal to or greater than areas with a tropical wet climate. Here, intense monsoon rains fall during the three hottest months of the year, which are usually between June and October. Snow and ice, which are most common in high altitudes and latitudes, cover most of the Earth’s polar regions. High altitude regions of the Andes, Tibetan Plateau, and the Rocky Mountains maintain some amount of snow cover year-round.Over the next century, it is predicted warming global temperatures will increase the temperature of the ocean and increase the speed of the water cycle. With a quicker rate of evaporation, there will be more water in the atmosphere, allowing clouds to produce heavier precipitation and more intense storms. Although storms would be more intense in wetter regions, increased evaporation could also lead to extreme drought in drier areas of the world. This would greatly affect farmers who grow crops in dry locations like Southern California or Kansas.This map layer shows Earth's mean precipitation (measured in centimeters per month) averaged from 1981 to 2012 as calculated but the Copernicus Climate Change Service. The data was collected from the Copernicus satellite and validated with precipitation measurements from weather stations. Scientists averaged all of the amounts (originally collected in meters) occurring each month together, and they calculated the average of each month over 30 years to create this map.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Precipitation in the United States increased to 735.83 mm in 2023 from 707.98 mm in 2022. This dataset includes a chart with historical data for the United States Average Precipitation.
Between 2001 and 2024, the average rainfall in the United Kingdom varied greatly. In 2010, rainfall dropped to a low of 1,020 millimeters, which was a noticeable decrease when compared to the previous year. However, the following year, rainfall increased significantly to a peak of 1,889 millimeters. During the period in consideration, rainfall rarely rose above 1,500 millimeters. In 2024, the annual average rainfall in the UK surpassed 1,386 millimeters. Monthly rainfall On average, rainfall is most common at the start and end of the year. Between 2014 and 2024, monthly rainfall peaked in December 2015 at approximately 217 millimeters. This was the first of only two times during this period that the average monthly rainfall rose above 200 millimeters. This was a deviation from December’s long-term mean of some 134 millimeters. Rainfall highest in Scotland In the United Kingdom, rain is often concentrated around mountainous regions such as the Scottish Highlands, so it is no surprise to see that – on average – it is Scotland that receives the most rainfall annually. However, in 2024, Wales received the highest rainfall amounting to approximately 1,600 millimeters. Geographically, it is the north and west of the United Kingdom that receives the lion's share of rain, as it is more susceptible to rainfall coming in from the Atlantic.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
30-year Average precipitation represents the average amount (mm) of precipitation received in a month across a 30 year period (1961-1991, 1971-2000, 1981-2010, 1991-2020). These values are calculated across Canada in 10x10 km cells.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.
[Metadata] Mean Annual Rainfall Isohyets in Millimeters for the Islands of Hawai‘i, Kaho‘olawe, Kaua‘i, Lāna‘i, Maui, Moloka‘i and O‘ahu. Source: 2011 Rainfall Atlas of Hawaii, https://www.hawaii.edu/climate-data-portal/rainfall-atlas. Note that Moloka‘I data/maps were updated in 2014. Please see Rainfall Atlas final report appendix for full method details: https://www.hawaii.edu/climate-data-portal/rainfall-atlas.
Statewide GIS program staff downloaded data from UH Geography
Department, Rainfall Atlas of Hawaii, February, 2019. Annual and
monthly isohyets of mean rainfall were available for download. The
statewide GIS program makes available only the annual layer. Both the
monthly layers and the original annual layer are available from the
Rainfall Atlas of Hawaii website, referenced above. Note: Contour attribute value represents the amount of annual rainfall, in millimeters, for that line/isohyet. For additional information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/isohyets.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/BAR411https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/BAR411
Result of a long experience in cooperation with the African meteorological departments and of the management of data bases, this map displays the annual rainfalls over a 60-year period. Maps representing rainfall over the whole African continent are rare, and a map dealing with observed rainfall over such a long period has never been released. Measurements of almost 6,000 raingauges were used for the calculation of mean values. This dataset contains in shapefiles format ArcGis : 1-isohyets of the annual Rainfall Map of Africa 2-isohyets that show the shifting of the isohyetal lines on the small map . Grids of rainfall at a step of half square degree and at a monthly time step are provided on the website of SIEREM (Environmental Information System for Water Resources and Modelling). Fruit d'une longue expérience de coopération avec les services climatologiques africains et de gestion de bases de données, cette carte affiche les pluies annuelles sur une période de 60 ans. Rares sont les cartes représentant les pluies observées sur la totalité du continent africain, et inédite une carte traitant de ce sujet sur une période aussi longue. Les mesures de près de 6 000 postes ont été utilisées pour le calcul des valeurs moyennes. Tous les fichiers de données sont au format ArcGIS (shapefiles) et contiennent : 1- Isohyètes de la carte des pluies annuelles en Afrique 2- Isohyètes qui montrent le déplacement des isohyètes sur la période Des grilles de pluies au pas du demi-degré carré et au pas de temps mensuel sont mises à disposition sur le site de SIEREM (Système d'informations environnementales pour les ressources en eau et leur modélisation).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset consists of twelve monthly images for 1991-2020, available in small, large, broadcast media, full size zip, and KML archive formats. These images were derived from NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid).Description from Climate.gov:Q:How much rain and snow usually fall this month?A:Based on daily observations from 1991-2020, colors on the map show long-term average precipitation totals in 5x5 km grid cells for the month displayed. The darker the color, the higher the total precipitation.Q:Where do these measurements come from?A:Daily totals of rain and snow come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments gathered the data from 1991 to 2020 and submitted them to the National Centers for Environmental Information (NCEI). After scientists checked the quality of the data to omit any systematic errors, they calculated each station’s monthly total and plotted it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid).Q:What do the colors mean?A:White areas on the map received an average of zero measurable precipitation during the month from 1991-2020. Areas shown in the lightest green received a monthly average of less than one inch of water from rain or snow over the 30-year period. The darker the color on the map, the higher the average precipitation total for the month. Areas shown in dark blue received an average of eight or more inches of water that fell as either rain or snow. Note that snowfall totals are reported as the amount of liquid water they produce upon melting. Thus, a 10-inch snowfall that melts to produce one inch of liquid water would be counted as one inch of precipitation.Q:Why do these data matter?A:Understanding these values provides insight into the “normal” conditions for a month. This type of information is widely used across an array of planning activities, from designing energy distribution networks, to the timing of crop and plant emergence, to choosing the right place and time for recreational activities.Q:How did you produce these snapshots?A:Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on climate data (NClimGrid) produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps.Additional informationThe data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources:NClimGrid Precipitation Normals ReferencesNOAA Monthly U.S. Climate Gridded Dataset (NClimGrid)NOAA Monthly U.S. Climate Divisional Database (NClimDiv)Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions)NCEI Monthly National Analysis)Climate at a Glance - Data Information)NCEI Climate Monitoring - All Products
https://data.mfe.govt.nz/license/attribution-3-0-new-zealand/https://data.mfe.govt.nz/license/attribution-3-0-new-zealand/
Annual rainfall is the total accumulated rain over one year. Rain is vital for life, including plant growth, drinking water, river ecosystem health, and sanitation. Floods and droughts affect our environment, economy, and recreational opportunities.
This dataset shows annual average rainfall across New Zealand for years 1972 to 2013. Annual rainfall is estimated from the daily rainfall estimates of the Virtual Climate Station Network (NIWA).
This dataset relates to the "Annual average rainfall" measure on the Environmental Indicators, Te taiao Aotearoa website.
Geometry: raster catalogue Unit: mm/yr
This metadata record describes the 30-year annual average of precipitation in millimeters (mm) and temperature (Celsius) during the period 1990–2019 for North America. The source data were produced by and acquired from DAYMET daily climate data (2020) and presented here as a series of two 1-kilometer resolution GeoTIFF files. An open source python code file used to process the data is also included.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
This is the same as the source data "BOM, Australian Average Rainfall Data from 1961 to 1990" but clipped to the combined extent of the Hunter subregion and Sydney Basin bioregion.
Report map production.
The source Aust wide rainfall raster rainann was clipped to the Hunter subregion + sydney Basin bioregion using ArcMap Spatial Analyst Extract by Mask tool
Bioregional Assessment Programme (2015) SYD Mean Annual Rainfall v01. Bioregional Assessment Derived Dataset. Viewed 22 June 2018, http://data.bioregionalassessments.gov.au/dataset/81593e61-cada-44e1-a8e9-1710cdf2fcf2.
Derived From Bioregional Assessment areas v02
Derived From Gippsland Project boundary
Derived From Bioregional Assessment areas v04
Derived From Natural Resource Management (NRM) Regions 2010
Derived From Bioregional Assessment areas v03
Derived From Victoria - Seamless Geology 2014
Derived From Bioregional Assessment areas v05
Derived From BOM, Australian Average Rainfall Data from 1961 to 1990
Derived From Bioregional Assessment areas v01
Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb)
Derived From GEODATA TOPO 250K Series 3
Derived From NSW Catchment Management Authority Boundaries 20130917
Derived From Geological Provinces - Full Extent
Derived From Bioregional Assessment areas v06
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Percent of Average Precipitation represents the accumulation of precipitation for a location, divided by the long term average value. The long term average value is defined as the average amount over the 1981 – 2010 period. Products are produced for the following timeframes: Agricultural Year, Growing Season, Winter Season, as well as rolling products for 30, 60, 90, 180, 270, 365, 730, 1095, 1460 and 1825 days.
Typical annual rainfall data were summarized from monthly precipitation data and provided in millimeters (mm). The monthly climate data for global land areas were generated from a large network of weather stations by the WorldClim project. Precipitation and temperature data were collected from the weather stations and aggregated across a target temporal range of 1970-2000.
Weather station data (between 9,000 and 60,000 stations) were interpolated using thin-plate splines with covariates including elevation, distance to the coast, and MODIS-derived minimum and maximum land surface temperature. Spatial interpolation was first done in 23 regions of varying size depending on station density, instead of the common approach to use a single model for the entire world. The satellite imagery data were most useful in areas with low station density. The interpolation technique allowed WorldClim to produce high spatial resolution (approximately 1 km2) raster data sets.