The annual returns of the Nasdaq 100 Index from 1986 to 2024. fluctuated significantly throughout the period considered. The Nasdaq 100 index saw its lowest performance in 2008, with a return rate of ****** percent, while the largest returns were registered in 1999, at ****** percent. As of June 11, 2024, the rate of return of Nasdaq 100 Index stood at ** percent. The Nasdaq 100 is a stock market index comprised of the 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. How has the Nasdaq 100 evolved over years? The Nasdaq 100, which was previously heavily influenced by tech companies during the dot-com boom, has undergone significant diversification. Today, it represents a broader range of high-growth, non-financial companies across sectors like consumer services and healthcare, reflecting the evolving landscape of the global economy. The annual development of the Nasdaq 100 recently has generally been positive, except for 2022, when the NASDAQ experienced a decline due to worries about escalating inflation, interest rates, and regulatory challenges. What are the leading companies on Nasdaq 100? In August 2023, ***** was the largest company on the Nasdaq 100, with a market capitalization of **** trillion euros. Also, ****************************************** were among the five leading companies included in the index. Market capitalization is one of the most common ways of measuring how big a company is in the financial markets. It is calculated by multiplying the total number of outstanding shares by the current market price.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Between January 1971 and May 2025, gold had average annual returns of **** percent, which was only slightly more than the return of commodities, with an annual average of around eight percent. The annual return of gold was over ** percent in 2024. What is the total global demand for gold? The global demand for gold remains robust owing to its historical importance, financial stability, and cultural appeal. During economic uncertainty, investors look for a safe haven, while emerging markets fuel jewelry demand. A distinct contrast transpired during COVID-19, when the global demand for gold experienced a sharp decline in 2020 owing to a reduction in consumer spending. However, the subsequent years saw an increase in demand for the precious metal. How much gold is produced worldwide? The production of gold depends mainly on geological formations, market demand, and the cost of production. These factors have a significant impact on the discovery, extraction, and economic viability of gold mining operations worldwide. In 2024, the worldwide production of gold was expected to reach *** million ounces, and it is anticipated that the rate of growth will increase as exploration technologies improve, gold prices rise, and mining practices improve.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Sources:
German Central Bank (ed.), 1975: Deutsches Geld- und Bankwesen in Zahlen 1876 – 1975. (German monetary system and banking system in numbers 1876 – 1975) German Central Bank (ed.), different years: monthly reports of the German Central Bank, statistical part, interest rates German Central Bank (ed.), different years: Supplementary statistical booklets for the monthly reports of the German Central Bank 1959 – 1992, security statistics Reich Statistical Office (ed.), different years: Statistical yearbook of the German empire Statistical Office (ed.), 1985: Geld und Kredit. Index der Aktienkurse (Money and Credit. Index of share prices) – Lange Reihe; Fachserie 9, Reihe 2. Statistical Office (ed.), 1987: Entwicklung der Nahrungsmittelpreise von 1800 – 1880 in Deutschland. (Development of food prices in Germany 1800 – 1880) Statistical Office (ed.), 1987: Entwicklung der Verbraucherpreise (Development of consumer prices) seit 1881 in Deutschland. (Development of consumer prices since 1881 in Germany) Statistical Office (ed.), different years: Fachserie 17, Reihe 7, Preisindex für die Lebenshaltung (price index for costs of living) Donner, 1934: Kursbildung am Aktienmarkt; Grundlagen zur Konjunkturbeobachtung an den Effektenmärkten. (Prices on the stock market; groundwork for observation of economic cycles on the stock market) Homburger, 1905: Die Entwicklung des Zinsfusses in Deutschland von 1870 – 1903. (Development of the interest flow in Germany, 1870 – 1903) Voye, 1902: Über die Höhe der verschiedenen Zinsarten und ihre wechselseitige Abhängigkeit.(On the values of different types of interests and their interdependence).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for Vanguard Whitehall Funds - Vanguard High Dividend Yield ETF. The frequency of the observation is daily. Moving average series are also typically included. The manager employs an indexing investment approach designed to track the performance of the index, which consists of common stocks of companies that pay dividends that generally are higher than average. The adviser attempts to replicate the target index by investing all, or substantially all, of the fund's assets in the stocks that make up the index, holding each stock in approximately the same proportion as its weighting in the index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Russia's main stock market index, the MOEX, rose to 3012 points on August 15, 2025, gaining 1.16% from the previous session. Over the past month, the index has climbed 8.45% and is up 6.57% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Russia. Russia Stock Market Index MOEX CFD - values, historical data, forecasts and news - updated on August of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data represents the effective yield of the ICE BofA US Corporate Index, which tracks the performance of US dollar denominated investment grade rated corporate debt publicly issued in the US domestic market. To qualify for inclusion in the index, securities must have an investment grade rating (based on an average of Moody's, S&P, and Fitch) and an investment grade rated country of risk (based on an average of Moody's, S&P, and Fitch foreign currency long term sovereign debt ratings). Each security must have greater than 1 year of remaining maturity, a fixed coupon schedule, and a minimum amount outstanding of $250 million. Original issue zero coupon bonds, "global" securities (debt issued simultaneously in the eurobond and US domestic bond markets), 144a securities and pay-in-kind securities, including toggle notes, qualify for inclusion in the Index. Callable perpetual securities qualify provided they are at least one year from the first call date. Fixed-to-floating rate securities also qualify provided they are callable within the fixed rate period and are at least one year from the last call prior to the date the bond transitions from a fixed to a floating rate security. DRD-eligible and defaulted securities are excluded from the Index.
ICE BofA Explains the Construction Methodology of this series as: Index constituents are capitalization-weighted based on their current amount outstanding. With the exception of U.S. mortgage pass-throughs and U.S. structured products (ABS, CMBS and CMOs), accrued interest is calculated assuming next-day settlement. Accrued interest for U.S. mortgage pass-through and U.S. structured products is calculated assuming same-day settlement. Cash flows from bond payments that are received during the month are retained in the index until the end of the month and then are removed as part of the rebalancing. Cash does not earn any reinvestment income while it is held in the Index. The Index is rebalanced on the last calendar day of the month, based on information available up to and including the third business day before the last business day of the month. Issues that meet the qualifying criteria are included in the Index for the following month. Issues that no longer meet the criteria during the course of the month remain in the Index until the next month-end rebalancing at which point they are removed from the Index. When the last calendar day of the month takes place on the weekend, weekend observations will occur as a result of month ending accrued interest adjustments.
Certain indices and index data included in FRED are the property of ICE Data Indices, LLC (“ICE DATA”) and used under license. ICE® IS A REGISTERED TRADEMARK OF ICE DATA OR ITS AFFILIATES AND BOFA® IS A REGISTERED TRADEMARK OF BANK OF AMERICA CORPORATION LICENSED BY BANK OF AMERICA CORPORATION AND ITS AFFILIATES (“BOFA”) AND MAY NOT BE USED WITHOUT BOFA’S PRIOR WRITTEN APPROVAL. ICE DATA, ITS AFFILIATES AND THEIR RESPECTIVE THIRD PARTY SUPPLIERS DISCLAIM ANY AND ALL WARRANTIES AND REPRESENTATIONS, EXPRESS AND/OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE, INCLUDING WITH REGARD TO THE INDICES, INDEX DATA AND ANY DATA INCLUDED IN, RELATED TO, OR DERIVED THEREFROM. NEITHER ICE DATA, NOR ITS AFFILIATES OR THEIR RESPECTIVE THIRD PARTY PROVIDERS SHALL BE SUBJECT TO ANY DAMAGES OR LIABILITY WITH RESPECT TO THE ADEQUACY, ACCURACY, TIMELINESS OR COMPLETENESS OF THE INDICES OR THE INDEX DATA OR ANY COMPONENT THEREOF. THE INDICES AND INDEX DATA AND ALL COMPONENTS THEREOF ARE PROVIDED ON AN “AS IS” BASIS AND YOUR USE IS AT YOUR OWN RISK. ICE DATA, ITS AFFILIATES AND THEIR RESPECTIVE THIRD PARTY SUPPLIERS DO NOT SPONSOR, ENDORSE, OR RECOMMEND FRED, OR ANY OF ITS PRODUCTS OR SERVICES.
Copyright, 2023, ICE Data Indices. Reproduction of this data in any form is prohibited except with the prior written permission of ICE Data Indices.
The end of day Index values, Index returns, and Index statistics (“Top Level Data”) are being provided for your internal use only and you are not authorized or permitted to publish, distribute or otherwise furnish Top Level Data to any third-party without prior written approval of ICE Data. Neither ICE Data, its affiliates nor any of its third party suppliers shall have any liability for the accuracy or completeness of the Top Level Data furnished through FRED, or for delays, interruptions or omissions therein nor for any lost profits, direct, indirect, special or consequential damages. The Top Level Data is not investment advice and a reference to a particular investment or security, a credit rating or any observation concerning a security or investment provided in the Top Level Data is not a recommendation to buy, sell or hold such investment or security or make any other investment decisions. You shall not use any Indices as a reference index for the purpose of creating financial products (including but not limited to any exchange-traded fund or other passive index-tracking fund, or any other financial instrument whose objective or return is linked in any way to any Index) without prior written approval of ICE Data. ICE Data, their affiliates or their third party suppliers have exclusive proprietary rights in the Top Level Data and any information and software received in connection therewith. You shall not use or permit anyone to use the Top Level Data for any unlawful or unauthorized purpose. Access to the Top Level Data is subject to termination in the event that any agreement between FRED and ICE Data terminates for any reason. ICE Data may enforce its rights against you as the third-party beneficiary of the FRED Services Terms of Use, even though ICE Data is not a party to the FRED Services Terms of Use. The FRED Services Terms of Use, including but limited to the limitation of liability, indemnity and disclaimer provisions, shall extend to third party suppliers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, rose to 3728 points on August 18, 2025, gaining 0.85% from the previous session. Over the past month, the index has climbed 4.73% and is up 28.83% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for BNY Mellon High Yield Beta ETF. The frequency of the observation is daily. Moving average series are also typically included. The fund seeks to provide diversified investment exposure to the U.S. high yield bond market. Under normal circumstances, the fund will invest at least 80% of its net assets, plus any borrowings for investment purposes, in high yield securities and ETFs providing exposure to such securities. It's policy with respect to the investment of at least 80% of its net assets may be changed by the fund's board, upon 60 days' prior notice to shareholders. The fund's managers consider high yield securities to be securities with ratings that qualify for inclusion in the index.
Until the fourth quarter of 2023, the S&P 500 and the S&P 500 ESG index exhibited similar performance, both indexes were weighted to similar industries as the S&P 500 followed the leading 500 companies in the United States. Throughout 2024, the S&P 500 ESG index steadily outperformed the S&P 500 by ***** points on average. During the coronavirus pandemic, the technology sector was one of the best-performing sectors in the market. The major differences between the two indexes were the S&P 500 ESG index was skewed towards firms with higher environmental, social, and governance (ESG) scores and had a higher concentration of technology securities than the S&P 500 index. What is a market capitalization index? Both the S&P 500 and the S&P 500 ESG are market capitalization indexes, meaning the individual components (such as stocks and other securities) weighted to the indexes influence the overall value. Market trends such as inflation, interest rates, and international issues like the coronavirus pandemic and the popularity of ESG among professional investors affect the performance of stocks. When weighted components rise in value, this causes an increase in the overall value of the index they are weighted too. What trends are driving index performance? Recent economic and social trends have led to higher levels of ESG integration and maintenance among firms worldwide and higher prioritization from investors to include ESG-focused firms in their investment choices. From a global survey group over ********* of the respondents were willing to prioritize ESG benefits over a higher return on their investment. These trends influenced the performance of securities on the market, leading to an increased value of individual weighted stocks, resulting in an overall increase in the index value.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for iShares 0-5 Year High Yield Corporate Bond ETF. The frequency of the observation is daily. Moving average series are also typically included. The index is designed to reflect the performance of U.S. dollar-denominated high yield corporate debt. The fund will invest at least 80% of its assets in the component securities of the underlying index, and the fund will invest at least 90% of its assets in fixed income securities of the types included in the underlying index that BFA believes will help the fund track the underlying index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for WisdomTree Yield Enhanced U.S. Short-Term Aggregate Bond Fund. The frequency of the observation is daily. Moving average series are also typically included. Under normal circumstances, at least 80% of the fund's total assets will be invested in constituent securities of the index and investments that have economic characteristics that are substantially identical to the economic characteristics of such constituent securities. The index is designed to broadly capture the short-term U.S. investment grade, fixed income securities market while seeking to enhance yield within desired risk parameters and constraints. The fund is non-diversified.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, rose to 43378 points on August 15, 2025, gaining 1.71% from the previous session. Over the past month, the index has climbed 9.37% and is up 13.97% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on August of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market return (%, year-on-year) in Sweden was reported at 29.59 % in 2021, according to the World Bank collection of development indicators, compiled from officially recognized sources. Sweden - Stock market return (%, year-on-year) - actual values, historical data, forecasts and projections were sourced from the World Bank on August of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada's main stock market index, the TSX, fell to 27905 points on August 15, 2025, losing 0.04% from the previous session. Over the past month, the index has climbed 2.77% and is up 21.04% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Canada. Canada Stock Market Index (TSX) - values, historical data, forecasts and news - updated on August of 2025.
The annual returns of the Nasdaq 100 Index from 1986 to 2024. fluctuated significantly throughout the period considered. The Nasdaq 100 index saw its lowest performance in 2008, with a return rate of ****** percent, while the largest returns were registered in 1999, at ****** percent. As of June 11, 2024, the rate of return of Nasdaq 100 Index stood at ** percent. The Nasdaq 100 is a stock market index comprised of the 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. How has the Nasdaq 100 evolved over years? The Nasdaq 100, which was previously heavily influenced by tech companies during the dot-com boom, has undergone significant diversification. Today, it represents a broader range of high-growth, non-financial companies across sectors like consumer services and healthcare, reflecting the evolving landscape of the global economy. The annual development of the Nasdaq 100 recently has generally been positive, except for 2022, when the NASDAQ experienced a decline due to worries about escalating inflation, interest rates, and regulatory challenges. What are the leading companies on Nasdaq 100? In August 2023, ***** was the largest company on the Nasdaq 100, with a market capitalization of **** trillion euros. Also, ****************************************** were among the five leading companies included in the index. Market capitalization is one of the most common ways of measuring how big a company is in the financial markets. It is calculated by multiplying the total number of outstanding shares by the current market price.