Facebook
TwitterIn 2024, about 44.7 percent of White households in the United States had an annual median income of over 100,000 U.S. dollars. By comparison, only 26.8 percent of Black households were in this income group. Asian Americans, on the other hand, had the highest median income per household that year.
Facebook
TwitterIn the United States, the median income for Black households in 2024 was 56,020 U.S. dollars. This represented a significant drop from the previous year. Since 1990, the median income of African American households grew from 40,820 U.S. dollars (adjusted to 2024 values).
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over: Black or African American (LEU0252884600Q) from Q1 2000 to Q2 2025 about African-American, full-time, salaries, workers, earnings, 16 years +, wages, median, real, employment, and USA.
Facebook
TwitterIn 2023, the mean income of Black Bachelor's degree holders was ****** U.S. dollars, compared to ****** U.S. dollars for White Americans with a Bachelor's degree.
Facebook
TwitterU.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.
Facebook
TwitterThis statistic shows the median weekly earnings of full-time wage and salary workers in the United States by gender and ethnicity in the first quarter of 2025. The usual weekly earnings of a male Asian American wage worker was 1,822 U.S. dollars.
Facebook
TwitterThe gender pay gap or gender wage gap is the average difference between the remuneration for men and women who are working. Women are generally considered to be paid less than men. There are two distinct numbers regarding the pay gap: non-adjusted versus adjusted pay gap. The latter typically takes into account differences in hours worked, occupations were chosen, education, and job experience. In the United States, for example, the non-adjusted average female's annual salary is 79% of the average male salary, compared to 95% for the adjusted average salary.
The reasons link to legal, social, and economic factors, and extend beyond "equal pay for equal work".
The gender pay gap can be a problem from a public policy perspective because it reduces economic output and means that women are more likely to be dependent upon welfare payments, especially in old age.
This dataset aims to replicate the data used in the famous paper "The Gender Wage Gap: Extent, Trends, and Explanations", which provides new empirical evidence on the extent of and trends in the gender wage gap, which declined considerably during the 1980–2010 period.
fedesoriano. (January 2022). Gender Pay Gap Dataset. Retrieved [Date Retrieved] from https://www.kaggle.com/fedesoriano/gender-pay-gap-dataset.
There are 2 files in this dataset: a) the Panel Study of Income Dynamics (PSID) microdata over the 1980-2010 period, and b) the Current Population Survey (CPS) to provide some additional US national data on the gender pay gap.
PSID variables:
NOTES: THE VARIABLES WITH fz ADDED TO THEIR NAME REFER TO EXPERIENCE WHERE WE HAVE FILLED IN SOME ZEROS IN THE MISSING PSID YEARS WITH DATA FROM THE RESPONDENTS’ ANSWERS TO QUESTIONS ABOUT JOBS WORKED ON DURING THESE MISSING YEARS. THE fz variables WERE USED IN THE REGRESSION ANALYSES THE VARIABLES WITH A predict PREFIX REFER TO THE COMPUTATION OF ACTUAL EXPERIENCE ACCUMULATED DURING THE YEARS IN WHICH THE PSID DID NOT SURVEY THE RESPONDENTS. THERE ARE MORE PREDICTED EXPERIENCE LEVELS THAT ARE NEEDED TO IMPUTE EXPERIENCE IN THE MISSING YEARS IN SOME CASES. NOTE THAT THE VARIABLES yrsexpf, yrsexpfsz, etc., INCLUDE THESE COMPUTATIONS, SO THAT IF YOU WANT TO USE FULL TIME OR PART TIME EXPERIENCE, YOU DON’T NEED TO ADD THESE PREDICT VARIABLES IN. THEY ARE INCLUDED IN THE DATA SET TO ILLUSTRATE THE RESULTS OF THE COMPUTATION PROCESS. THE VARIABLES WITH AN orig PREFIX ARE THE ORIGINAL PSID VARIABLES. THESE HAVE BEEN PROCESSED AND IN SOME CASES RENAMED FOR CONVENIENCE. THE hd SUFFIX MEANS THAT THE VARIABLE REFERS TO THE HEAD OF THE FAMILY, AND THE wf SUFFIX MEANS THAT IT REFERS TO THE WIFE OR FEMALE COHABITOR IF THERE IS ONE. AS SHOWN IN THE ACCOMPANYING REGRESSION PROGRAM, THESE orig VARIABLES AREN’T USED DIRECTLY IN THE REGRESSIONS. THERE ARE MORE OF THE ORIGINAL PSID VARIABLES, WHICH WERE USED TO CONSTRUCT THE VARIABLES USED IN THE REGRESSIONS. HD MEANS HEAD AND WF MEANS WIFE OR FEMALE COHABITOR.
Facebook
TwitterIn 2024 the median annual income of Asian households in the United States was 121,700 U.S. dollars. They were followed by White households, who's median earnings were 92,530 U.S. dollars. Furthermore, Black Americans and American Indian and Alaska Native families had the lowest household incomes. That year, median income among all U.S. household rose to 83,730 U.S. dollars.
Facebook
TwitterIn 2025, just over 45 percent of American households had an annual income that was less than 75,000 U.S. dollars. On the other hand, some 16 percent had an annual income of 200,000 U.S. dollars or more. The median household income in the country reached almost 84,000 U.S. dollars in 2024. Income and wealth in the United States After the economic recession in 2009, income inequality in the U.S. is more prominent across many metropolitan areas. The Northeast region is regarded as one of the wealthiest in the country. Massachusetts, New Hampshire, and Maryland were among the states with the highest median household income in 2024. In terms of income by race and ethnicity, the average income of Asian households was highest, at over 120,000 U.S. dollars, while the median income among Black households was around half of that figure. What is the U.S. poverty threshold? The U.S. Census Bureau annually updates the poverty threshold based on the income of various household types. As of 2023, the threshold for a single-person household was 15,480 U.S. dollars. For a family of four, the poverty line increased to 31,200 U.S. dollars. There were an estimated 38.9 million people living in poverty across the United States in 2024, which reflects a poverty rate of 10.6 percent.
Facebook
TwitterThe Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. To meet the needs of users, the Bureau of Labor Statistics (BLS) produces population estimates (for consumer units or CUs) of average expenditures in news releases, reports, and articles in the Monthly Labor Review. Tabulated CE data are also available on the Internet and by facsimile transmission (see Section XVI. Appendix 5). These microdata files present detailed expenditure and income data for the Diary component of the CE for 2005. They include weekly expenditure (EXPD), annual income (DTBD) files, and imputed income files (DTID). The data in EXPD, DTBD, and DTID files are categorized by a Universal Classification Code (UCC). The advantage of the EXPD and DTBD files is that with the data classified in a standardized format, the user may perform comparative expenditure (income) analysis with relative ease. The FMLD and MEMD files present data on the characteristics and demographics of CUs and CU members. The summary level expenditure and income information on the FMLD files permits the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files. Estimates of average expenditures in 2005 from the Diary survey, integrated with data from the Interview survey, are published in Consumer Expenditures in 2005. A list of recent publications containing data from the CE appears at the end of this documentation. The microdata files are in the public domain and, with appropriate credit, may be reproduced without permission. A suggested citation is: “U.S. Department of Labor, Bureau of Labor Statistics, Consumer Expenditure Survey, Diary Survey, 2005”.
State Identifier Since the CE is not designed to produce state-level estimates, summing the consumer unit weights by state will not yield state population totals. A CU's basic weight reflects its probability of selection among a group of primary sampling units of similar characteristics. For example, sample units in an urban nonmetropolitan area in California may represent similar areas in Wyoming and Nevada. Among other adjustments, CUs are post-stratified nationally by sex-age-race. For example, the weights of consumer units containing a black male, age 16-24 in Alabama, Colorado, or New York, are all adjusted equivalently. Therefore, weighted population state totals will not match population totals calculated from other surveys that are designed to represent state data. To summarize, the CE sample was not designed to produce precise estimates for individual states. Although state-level estimates that are unbiased in a repeated sampling sense can be calculated for various statistical measures, such as means and aggregates, their estimates will generally be subject to large variances. Additionally, a particular state-population estimate from the CE sample may be far from the true state-population estimate.
Interpreting the data
Several factors should be considered when interpreting the expenditure data. The average expenditure for an item may be considerably lower than the expenditure by those CUs that purchased the item. The less frequently an item is purchased, the greater the difference between the average for all consumer units and the average of those purchasing. (See Section V.B. for ESTIMATION OF TOTAL AND MEAN EXPENDITURES). Also, an individual CU may spend more or less than the average, depending on its particular characteristics. Factors such as income, age of family Members, geographic location, taste and personal preference also influence expenditures. Furthermore, even within groups with similar characteristics, the distribution of expenditures varies substantially.
Expenditures reported are the direct out-of-pocket expenditures. Indirect expenditures, which may be significant, may be reflected elsewhere. For example, rental contracts often include utilities. Renters with such contracts would record no direct expense for utilities, and therefore, appear to have no utility expenses. Employers or insurance companies frequently pay other costs.CUs with Members whose employers pay for all or part of their health insurance or life insurance would have lower direct expenses for these items than those who pay the entire amount themselves. These points should be considered when relating reported averages to individual circumstances.
The Diary survey PUMD are organized into five major data files for each quarter:
1. FMLD - a file with characteristics, income, and summary level expenditures for the household
2. MEMD - a file with characteristics and income for each member in the household
3. EXPD - a detailed weekly expenditure file categorized by UCC
4. DTBD - a detailed annual income file categorized by UCC
5. DTID - a household imputed income file categorized by UCC
Consumer Unit
Sample survey data [ssd]
Computer Assisted Personal Interview [capi]
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides valuable insights into the wage gap between Hispanic and White workers in the United States.
The wage gap is expressed as a percentage by which hourly wages of Hispanic workers are less than those of White workers.
It is an essential measure for understanding income disparities and examining trends over time.
If you find this dataset insightful, don't forget to upvote it! 😊💝
Poverty-Level Wages in the USA Dataset
Black-White Wage Gap in the USA Dataset
Clash of Clans Clans Dataset 2023 (3.5M Clans)
Productivity and Hourly Compensation
Photo by Clay Banks on Unsplash
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Between 2019 and 2023, people living in households in the Asian and ‘Other’ ethnic groups were most likely to be in persistent low income before and after housing costs
Facebook
TwitterThe Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. To meet the needs of users, the Bureau of Labor Statistics (BLS) produces population estimates (for consumer units or CUs) of average expenditures in news releases, reports, and articles in the Monthly Labor Review. Tabulated CE data are also available on the Internet and by facsimile transmission (see Section XVI. Appendix 5). These microdata files present detailed expenditure and income data for the Diary component of the CE for 2005. They include weekly expenditure (EXPD), annual income (DTBD) files, and imputed income files (DTID). The data in EXPD, DTBD, and DTID files are categorized by a Universal Classification Code (UCC). The advantage of the EXPD and DTBD files is that with the data classified in a standardized format, the user may perform comparative expenditure (income) analysis with relative ease. The FMLD and MEMD files present data on the characteristics and demographics of CUs and CU members. The summary level expenditure and income information on the FMLD files permits the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files. Estimates of average expenditures in 2005 from the Diary survey, integrated with data from the Interview survey, are published in Consumer Expenditures in 2005. A list of recent publications containing data from the CE appears at the end of this documentation.
The microdata files are in the public domain and, with appropriate credit, may be reproduced without permission. A suggested citation is: “U.S. Department of Labor, Bureau of Labor Statistics, Consumer Expenditure Survey, Diary Survey, 2005”.
State Identifier Since the CE is not designed to produce state-level estimates, summing the consumer unit weights by state will not yield state population totals. A CU's basic weight reflects its probability of selection among a group of primary sampling units of similar characteristics. For example, sample units in an urban nonmetropolitan area in California may represent similar areas in Wyoming and Nevada. Among other adjustments, CUs are post-stratified nationally by sex-age-race. For example, the weights of consumer units containing a black male, age 16-24 in Alabama, Colorado, or New York, are all adjusted equivalently. Therefore, weighted population state totals will not match population totals calculated from other surveys that are designed to represent state data.
To summarize, the CE sample was not designed to produce precise estimates for individual states. Although state-level estimates that are unbiased in a repeated sampling sense can be calculated for various statistical measures, such as means and aggregates, their estimates will generally be subject to large variances. Additionally, a particular state-population estimate from the CE sample may be far from the true state-population estimate.
Interpreting the data Several factors should be considered when interpreting the expenditure data. The average expenditure for an item may be considerably lower than the expenditure by those CUs that purchased the item. The less frequently an item is purchased, the greater the difference between the average for all consumer units and the average of those purchasing. (See Section V.B. for ESTIMATION OF TOTAL AND MEAN EXPENDITURES). Also, an individual CU may spend more or less than the average, depending on its particular characteristics. Factors such as income, age of family Members, geographic location, taste and personal preference also influence expenditures. Furthermore, even within groups with similar characteristics, the distribution of expenditures varies substantially.
Expenditures reported are the direct out-of-pocket expenditures. Indirect expenditures, which may be significant, may be reflected elsewhere. For example, rental contracts often include utilities. Renters with such contracts would record no direct expense for utilities, and therefore, appear to have no utility expenses. Employers or insurance companies frequently pay other costs.CUs with Members whose employers pay for all or part of their health insurance or life insurance would have lower direct expenses for these items than those who pay the entire amount themselves. These points should be considered when relating reported averages to individual circumstances.
The Diary survey PUMD are organized into five major data files for each quarter:
1. FMLD - a file with characteristics, income, and summary level expenditures for the household
2. MEMD - a file with characteristics and income for each member in the household
3. EXPD - a detailed weekly expenditure file categorized by UCC
4. DTBD - a detailed annual income file categorized by UCC
5. DTID - a household imputed income file categorized by UCC
Consumer Unit
Sample survey data [ssd]
A. SURVEY SAMPLE DESIGN
Samples for the CE are national probability samples of households designed to be representative of the total U. S. civilian population. Eligible population includes all civilian noninstitutional persons.
The first step in sampling is the selection of primary sampling units (PSUs), which consist of counties (or parts thereof) or groups of counties. The set of sample PSUs used for the 2005 sample is composed of 102 areas. The design classifies the PSUs into four categories:
• 28 "A" certainty PSUs are Metropolitan Statistical Areas (MSA's) with a population greater than 1.5 million. • 42 "B" PSUs, are medium-sized MSAs. • 16 "C" PSUs are nonmetropolitan areas that are included in the CPI. • 16 "D" PSUs are nonmetropolitan areas where only the urban population data will be included in the CPI.
The sampling frame (that is, the list from which housing units were chosen) for the 2005 survey is generated from the 2000 Population Census file. The sampling frame is augmented by new construction permits and by techniques used to eliminate recognized deficiencies in census coverage. All Enumeration Districts (EDs) from the Census that fail to meet the criterion for good addresses for new construction, and all EDs in nonpermit-issuing areas are grouped into the area segment frame.
To the extent possible, an unclustered sample of units is selected within each PSU. This lack of clustering is desirable because the sample size of the Diary Survey is small relative to other surveys, while the intraclass correlations for expenditure characteristics are relatively large. This suggests that any clustering of the sample units could result in an unacceptable increase in the within-PSU variance and, as a result, the total variance.
Each selected sample unit is requested to keep two 1-week diaries of expenditures over consecutive weeks. The earliest possible day for placing a diary with a household is predesignated with each day of the week having an equal chance to be the first of the reference week. The diaries are evenly spaced throughout the year.
B. COOPERATION LEVELS
The annual target sample size at the United States level for the Diary Survey is 7,800 participating sample units. To achieve this target the total estimated work load is 11,275 sample units. This allows for refusals, vacancies, or nonexistent sample unit addresses.
Each participating sample unit selected is asked to keep two 1-week diaries. Each diary is treated independently, so response rates are based on twice the number of housing units sampled.
Computer Assisted Personal Interview [capi]
The response rate for the 2005 Diary Survey is 68.9%. This response rate refers to all diaries in the year.
Facebook
TwitterThe Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. To meet the needs of users, the Bureau of Labor Statistics (BLS) produces population estimates for consumer units (CUs) of average expenditures in news releases, reports, issues, and articles in the Monthly Labor Review. Tabulated CE data are also available on the Internet and by facsimile transmission (See Section XV. APPENDIX 4). The microdata are available online at http://www/bls.gov/cex/pumdhome.htm.
These microdata files present detailed expenditure and income data for the Diary component of the CE for 2003. They include weekly expenditure (EXPD) and annual income (DTBD) files. The data in EXPD and DTBD files are categorized by a Universal Classification Code (UCC). The advantage of the EXPD and DTBD files is that with the data classified in a standardized format, the user may perform comparative expenditure (or income) analysis with relative ease. The FMLD and MEMD files present data on the characteristics and demographics of CUs and CU members. The summary level expenditure and income information on the FMLD files permits the data user to link consumer spending, by general expenditure category, and household characteristics and demographics on one set of files.
Estimates of average expenditures in 2003 from the Diary survey, integrated with data from the Interview survey, are published in Consumer Expenditures in 2003. A list of recent publications containing data from the CE appears at the end of this documentation.
The microdata files are in the public domain and with appropriate credit, may be reproduced without permission. A suggested citation is: "U.S. Department of Labor, Bureau of Labor Statistics, Consumer Expenditure Survey, Diary Survey, 2003".
STATE IDENTIFIER
Since the CE is not designed to produce state-level estimates, summing the consumer unit weights by state will not yield state population totals. A CU's basic weight reflects its probability of selection among a group of primary sampling units of similar characteristics. For example, sample units in an urban nonmetropolitan area in California may represent similar areas in Wyoming and Nevada. Among other adjustments, CUs are post-stratified nationally by sex-age-race. For example, the weights of consumer units containing a black male, age 16-24 in Alabama, Colorado, or New York, are all adjusted equivalently. Therefore, weighted population state totals will not match population totals calculated from other surveys that are designed to represent state data.
To summarize, the CE sample was not designed to produce precise estimates for individual states. Although state-level estimates that are unbiased in a repeated sampling sense can be calculated for various statistical measures, such as means and aggregates, their estimates will generally be subject to large variances. Additionally, a particular state-population estimate from the CE sample may be far from the true state-population estimate.
INTERPRETING THE DATA
Several factors should be considered when interpreting the expenditure data. The average expenditure for an item may be considerably lower than the expenditure by those CUs that purchased the item. The less frequently an item is purchased, the greater the difference between the average for all consumer units and the average of those purchasing. (See Section V.B. for ESTIMATION OF TOTAL AND MEAN EXPENDITURES). Also, an individual CU may spend more or less than the average, depending on its particular characteristics. Factors such as income, age of family members, geographic location, taste and personal preference also influence expenditures. Furthermore, even within groups with similar characteristics, the distribution of expenditures varies substantially.
Expenditures reported are the direct out-of-pocket expenditures. Indirect expenditures, which may be significant, may be reflected elsewhere. For example, rental contracts often include utilities. Renters with such contracts would record no direct expense for utilities, and therefore, appear to have no utility expenses. Employers or insurance companies frequently pay other costs. CUs with members whose employers pay for all or part of their health insurance or life insurance would have lower direct expenses for these items than those who pay the entire amount themselves. These points should be considered when relating reported averages to individual circumstances.
The Diary survey PUMD are organized into five major data files for each quarter:
1. FMLD - a file with characteristics, income, and summary level expenditures for the household
2. MEMD - a file with characteristics and income for each member in the household
3. EXPD - a detailed weekly expenditure file categorized by UCC
4. DTBD - a detailed annual income file categorized by UCC
5. DTID - a household imputed income file categorized by UCC
Consumer Unit
Sample survey data [ssd]
A. SURVEY SAMPLE DESIGN
Samples for the CE are national probability samples of households designed to be representative of the total U. S. civilian population. Eligible population includes all civilian noninstitutional persons.
The first step in sampling is the selection of primary sampling units (PSUs), which consist of counties (or parts thereof) or groups of counties. The set of sample PSUs used for the 2003 sample is composed of 105 areas. The design classifies the PSUs into four categories:
• 31 "A" certainty PSUs are Metropolitan Statistical Areas (MSA's) with a population greater than 1.5 million. • 46 "B" PSUs, are medium-sized MSA's. • 10 "C" PSUs are nonmetropolitan areas that are included in the CPI. • 18 "D" PSUs are nonmetropolitan areas where only the urban population data will be included in the CPI.
The sampling frame (that is, the list from which housing units were chosen) for the 2003 survey is generated from the 1990 Population Census 100-percent-detail file. The sampling frame is augmented by new construction permits and by techniques used to eliminate recognized deficiencies in census coverage. All Enumeration Districts (ED's) from the Census that fail to meet the criterion for good addresses for new construction, and all ED's in nonpermit-issuing areas are grouped into the area segment frame.
To the extent possible, an unclustered sample of units is selected within each PSU. This lack of clustering is desirable because the sample size of the Diary Survey is small relative to other surveys, while the intraclass correlations for expenditure characteristics are relatively large. This suggests that any clustering of the sample units could result in an unacceptable increase in the within-PSU variance and, as a result, the total variance.
Each selected sample unit is requested to keep two 1-week diaries of expenditures over consecutive weeks. The earliest possible day for placing a diary with a household is predesignated with each day of the week having an equal chance to be the first of the reference week. The diaries are evenly spaced throughout the year. During the last 6 weeks of the year, however, the Diary Survey sample is supplemented to twice its normal size to increase the reporting of types of expenditures unique to the holidays.
B. COOPERATION LEVELS
The annual target sample size at the United States level for the Diary Survey is 7,800 participating sample units. To achieve this target the total estimated work load is 11,275 sample units. This allows for refusals, vacancies, or nonexistent sample unit addresses.
Each participating sample unit selected is asked to keep two 1-week diaries. Each diary is treated independently, so response rates are based on twice the number of housing units sampled.
Computer Assisted Personal Interview [capi]
The response rate for the 2003 Diary Survey is 73.4%. This response rate refers to all diaries in the year.
Facebook
TwitterAsian households measured the highest median household income among racial and ethnic groups in the United States. In 2024, Asian household incomes reached a median of 121,700 U.S. dollars. On the other hand, Black households had the lowest median income of 56,020 U.S. dollars. Overall, median household incomes in the United States stood at 83,730 U.S. dollars that year.Asian and Caucasian (white not Hispanic) households had relatively high median incomes, while the median income of Hispanic, African American, American Indian, and Alaskan Native households all came in lower than the national median. A number of related statistics illustrate further the current state of racial inequality in the United States. Unemployment is highest among Black or African American individuals in the U.S. nearing nine percent unemployed, according to the Bureau of Labor Statistics in 2024. Hispanic individuals (of any race) were most likely to go without health insurance as of 2024.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
39.8% of workers from the Indian ethnic group were in 'professional' jobs in 2021 – the highest percentage out of all ethnic groups in this role.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The gender overall earnings gap is a synthetic indicator. It measures the impact of the three combined factors, namely: (1) the average hourly earnings, (2) the monthly average of the number of hours paid (before any adjustment for part-time work) and (3) the employment rate, on the average earnings of all women of working age - whether employed or not employed - compared to men.
Copyright notice and free re-use of data on: https://ec.europa.eu/eurostat/about-us/policies/copyright
Facebook
TwitterComprehensive demographic dataset for Raleigh, NC, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterThe median income in 2023 was at 56,490 U.S. dollars for Black households. In 1990, the median income among Black households was 38,360 U.S. dollars (In 2023 U.S. dollars).
Facebook
TwitterIn 2024, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the overall poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States The poverty threshold for a single person in the United States was measured at an annual income of ****** U.S. dollars in 2023. Among families of four, the poverty line increases to ****** U.S. dollars a year. Women and children are more likely to suffer from poverty. This is due to the fact that women are more likely than men to stay at home, to care for children. Furthermore, the gender-based wage gap impacts women's earning potential. Poverty data Despite being one of the wealthiest nations in the world, the United States has some of the highest poverty rates among OECD countries. While, the United States poverty rate has fluctuated since 1990, it has trended downwards since 2014. Similarly, the average median household income in the U.S. has mostly increased over the past decade, except for the covid-19 pandemic period. Among U.S. states, Louisiana had the highest poverty rate, which stood at some ** percent in 2024.
Facebook
TwitterIn 2024, about 44.7 percent of White households in the United States had an annual median income of over 100,000 U.S. dollars. By comparison, only 26.8 percent of Black households were in this income group. Asian Americans, on the other hand, had the highest median income per household that year.