26 datasets found
  1. T

    Vital Signs: Jobs by Wage Level - Metro

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Jobs by Wage Level - Metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Metro/bt32-8udw
    Explore at:
    csv, tsv, application/rssxml, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Jan 18, 2019
    Description

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

    FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

    LAST UPDATED January 2019

    DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

    DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

    American Community Survey (2001-2017) http://api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

    Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

    Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

    Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

    In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

  2. F

    Average Weekly Wages for Employees in Private Establishments in San...

    • fred.stlouisfed.org
    json
    Updated Jun 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Weekly Wages for Employees in Private Establishments in San Francisco-Oakland-Fremont, CA (MSA) [Dataset]. https://fred.stlouisfed.org/series/ENUC418640510
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 4, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Oakland, California, San Francisco
    Description

    Graph and download economic data for Average Weekly Wages for Employees in Private Establishments in San Francisco-Oakland-Fremont, CA (MSA) (ENUC418640510) from Q1 1990 to Q4 2024 about San Francisco, establishments, average, wages, CA, private, employment, and USA.

  3. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/school/Bay%20Area%20Medical%20Academy
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    FrogHire.ai
    Description

    The Average Salary chart presents a clear visualization of the salary progression for graduates from Bay Area Medical Academy from 2020 to 2023, illustrating the yearly average salary trends. Additionally, the chart compares these figures with the overall average salary trends of graduates from all schools, providing a comprehensive view of how Bay Area Medical Academy’s graduates stand in terms of earning potential relative to their peers nationwide. This data is crucial for prospective students assessing the ROI of their education at Bay Area Medical Academy.

  4. F

    Per Capita Personal Income in San Francisco-Oakland-Hayward, CA (MSA)

    • fred.stlouisfed.org
    json
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Per Capita Personal Income in San Francisco-Oakland-Hayward, CA (MSA) [Dataset]. https://fred.stlouisfed.org/series/SANF806PCPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 4, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Oakland, Hayward, California, San Francisco
    Description

    Graph and download economic data for Per Capita Personal Income in San Francisco-Oakland-Hayward, CA (MSA) (SANF806PCPI) from 1969 to 2023 about San Francisco, personal income, per capita, CA, personal, income, and USA.

  5. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  6. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/major/High%20School%20%28Also%20Completed%20Intensive%20English%20At%20City%20College%20San%20Francisco%29
    Explore at:
    Dataset updated
    Apr 6, 2025
    Dataset provided by
    FrogHire.ai
    Description

    Explore the progression of average salaries for graduates in High School (Also Completed Intensive English At City College San Francisco) from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of High School (Also Completed Intensive English At City College San Francisco) relative to other fields. This data is essential for students assessing the return on investment of their education in High School (Also Completed Intensive English At City College San Francisco), providing a clear picture of financial prospects post-graduation.

  7. Average salaries in leading U.S. life science regions 2023

    • statista.com
    Updated May 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average salaries in leading U.S. life science regions 2023 [Dataset]. https://www.statista.com/statistics/1465276/salaries-in-top-us-life-science-regions/
    Explore at:
    Dataset updated
    May 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Northern California's life science industry, also called Biotech Bay because of its concentration around San Francisco's bay area, had the highest average salary among U.S. life science hubs as of 2023. The average salary in this region stood at some 212,000 U.S. dollars. The cost of living and the concentration of life science establishments in certain areas are the major reasons for large salary differences among U.S. regions.

  8. F

    Estimate of Median Household Income for Alameda County, CA

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimate of Median Household Income for Alameda County, CA [Dataset]. https://fred.stlouisfed.org/series/MHICA06001A052NCEN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Alameda County, California
    Description

    Graph and download economic data for Estimate of Median Household Income for Alameda County, CA (MHICA06001A052NCEN) from 1989 to 2023 about Alameda County, CA; San Francisco; CA; households; median; income; and USA.

  9. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/major/Vocal%20%28Also%20Completed%20Intensive%20English%20Program%20At%20City%20College%20Of%20San%20Francisco%29
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    FrogHire.ai
    Description

    Explore the progression of average salaries for graduates in Vocal (Also Completed Intensive English Program At City College Of San Francisco) from 2020 to 2023 through this detailed chart. It compares these figures against the national average for all graduates, offering a comprehensive look at the earning potential of Vocal (Also Completed Intensive English Program At City College Of San Francisco) relative to other fields. This data is essential for students assessing the return on investment of their education in Vocal (Also Completed Intensive English Program At City College Of San Francisco), providing a clear picture of financial prospects post-graduation.

  10. N

    Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of San...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Bracket Analysis by Age Group Dataset: Age-Wise Distribution of San Francisco, CA Household Incomes Across 16 Income Brackets // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/f36b5b4f-f353-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, San Francisco
    Variables measured
    Number of households with income $200,000 or more, Number of households with income less than $10,000, Number of households with income between $15,000 - $19,999, Number of households with income between $20,000 - $24,999, Number of households with income between $25,000 - $29,999, Number of households with income between $30,000 - $34,999, Number of households with income between $35,000 - $39,999, Number of households with income between $40,000 - $44,999, Number of households with income between $45,000 - $49,999, Number of households with income between $50,000 - $59,999, and 6 more
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across 16 income brackets (mentioned above) following an initial analysis and categorization. Using this dataset, you can find out the total number of households within a specific income bracket along with how many households with that income bracket for each of the 4 age cohorts (Under 25 years, 25-44 years, 45-64 years and 65 years and over). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the the household distribution across 16 income brackets among four distinct age groups in San Francisco: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..

    Key observations

    • Upon closer examination of the distribution of households among age brackets, it reveals that there are 10,181(2.81%) households where the householder is under 25 years old, 149,591(41.25%) households with a householder aged between 25 and 44 years, 117,093(32.29%) households with a householder aged between 45 and 64 years, and 85,785(23.66%) households where the householder is over 65 years old.
    • In San Francisco, the age group of 25 to 44 years stands out with both the highest median income and the maximum share of households. This alignment suggests a financially stable demographic, indicating an established community with stable careers and higher incomes.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • Less than $10,000
    • $10,000 to $14,999
    • $15,000 to $19,999
    • $20,000 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $59,999
    • $60,000 to $74,999
    • $75,000 to $99,999
    • $100,000 to $124,999
    • $125,000 to $149,999
    • $150,000 to $199,999
    • $200,000 or more

    Variables / Data Columns

    • Household Income: This column showcases 16 income brackets ranging from Under $10,000 to $200,000+ ( As mentioned above).
    • Under 25 years: The count of households led by a head of household under 25 years old with income within a specified income bracket.
    • 25 to 44 years: The count of households led by a head of household 25 to 44 years old with income within a specified income bracket.
    • 45 to 64 years: The count of households led by a head of household 45 to 64 years old with income within a specified income bracket.
    • 65 years and over: The count of households led by a head of household 65 years and over old with income within a specified income bracket.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for San Francisco median household income by age. You can refer the same here

  11. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/school/Miami%20Ad%20School-San%20Francisco
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    FrogHire.ai
    Description

    The Average Salary chart presents a clear visualization of the salary progression for graduates from Miami Ad School-San Francisco from 2020 to 2023, illustrating the yearly average salary trends. Additionally, the chart compares these figures with the overall average salary trends of graduates from all schools, providing a comprehensive view of how Miami Ad School-San Francisco’s graduates stand in terms of earning potential relative to their peers nationwide. This data is crucial for prospective students assessing the ROI of their education at Miami Ad School-San Francisco.

  12. Vital Signs: Jobs – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Oct 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Employment Development Department: Current Employment Statistics (2019). Vital Signs: Jobs – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-Bay-Area/rtdm-ybjw
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, json, xmlAvailable download formats
    Dataset updated
    Oct 5, 2019
    Dataset provided by
    Employment Development Departmenthttp://www.edd.ca.gov/
    Authors
    California Employment Development Department: Current Employment Statistics
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Jobs (LU2)

    FULL MEASURE NAME Employment estimates by place of work

    LAST UPDATED October 2019

    DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees.

    DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/

    U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/

    U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/

    Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/

    METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed.

    For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017.

    The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma

  13. T

    Vital Signs: Jobs – by subcounty

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Mar 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2020). Vital Signs: Jobs – by subcounty [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-subcounty/67g7-4af5
    Explore at:
    csv, application/rssxml, json, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    Mar 5, 2020
    Dataset authored and provided by
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Jobs (LU2)

    FULL MEASURE NAME Employment estimates by place of work

    LAST UPDATED March 2020

    DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees.

    DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/

    U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/

    U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/

    Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/

    METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed.

    For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017.

    The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma

  14. F

    Per Capita Personal Income in San Francisco County/city, CA

    • fred.stlouisfed.org
    json
    Updated Mar 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Per Capita Personal Income in San Francisco County/city, CA [Dataset]. https://fred.stlouisfed.org/series/PCPI06075
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 4, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    California, San Francisco
    Description

    Graph and download economic data for Per Capita Personal Income in San Francisco County/city, CA (PCPI06075) from 1969 to 2023 about San Francisco County/City, CA; San Francisco; personal income; per capita; CA; personal; income; and USA.

  15. F

    Estimate of Median Household Income for Marin County, CA

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Estimate of Median Household Income for Marin County, CA [Dataset]. https://fred.stlouisfed.org/series/MHICA06041A052NCEN
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Marin County, California
    Description

    Graph and download economic data for Estimate of Median Household Income for Marin County, CA (MHICA06041A052NCEN) from 1989 to 2023 about Marin County, CA; San Francisco; CA; households; median; income; and USA.

  16. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/school/San%20Francisco%20Film%20School
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    FrogHire.ai
    Description

    The Average Salary chart presents a clear visualization of the salary progression for graduates from San Francisco Film School from 2020 to 2023, illustrating the yearly average salary trends. Additionally, the chart compares these figures with the overall average salary trends of graduates from all schools, providing a comprehensive view of how San Francisco Film School’s graduates stand in terms of earning potential relative to their peers nationwide. This data is crucial for prospective students assessing the ROI of their education at San Francisco Film School.

  17. U.S. most populated cities per capita income 2021

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. most populated cities per capita income 2021 [Dataset]. https://www.statista.com/statistics/205618/per-capita-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, the per capita income in San Francisco city was at 80,383 U.S. dollars. San Francisco was followed in this regard by Seattle and Washington, D.C. The most populated cities in the U.S. are ranked by per capita income in this statistic. While New York, New York had the highest population, San Francisco had the highest per capita income in 2021. The median household income in San Francisco in 2020 was 119,136 dollars, the highest among the most populated cities in the United States.

  18. Income Limits by County

    • data.ca.gov
    • catalog.data.gov
    csv, docx
    Updated Feb 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Housing and Community Development (2024). Income Limits by County [Dataset]. https://data.ca.gov/dataset/income-limits-by-county
    Explore at:
    docx(31186), csv(15447), csv(15546)Available download formats
    Dataset updated
    Feb 7, 2024
    Dataset provided by
    California Department of Housing & Community Developmenthttps://hcd.ca.gov/
    Authors
    California Department of Housing and Community Development
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    California State Income Limits reflect updated median income and household income levels for acutely low-, extremely low-, very low-, low- and moderate-income households for California’s 58 counties (required by Health and Safety Code Section 50093). These income limits apply to State and local affordable housing programs statutorily linked to HUD income limits and differ from income limits applicable to other specific federal, State, or local programs.

  19. f

    Data from: Average salary

    • froghire.ai
    Updated Apr 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FrogHire.ai (2025). Average salary [Dataset]. https://www.froghire.ai/school/University%20of%20California-San%20Francisco
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset provided by
    FrogHire.ai
    Description

    The Average Salary chart presents a clear visualization of the salary progression for graduates from University of California-San Francisco from 2020 to 2023, illustrating the yearly average salary trends. Additionally, the chart compares these figures with the overall average salary trends of graduates from all schools, providing a comprehensive view of how University of California-San Francisco’s graduates stand in terms of earning potential relative to their peers nationwide. This data is crucial for prospective students assessing the ROI of their education at University of California-San Francisco.

  20. U.S. California median household income 1990-2023

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. California median household income 1990-2023 [Dataset]. https://www.statista.com/statistics/205778/median-household-income-in-california/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, the median household income in California amounted to 89,870 U.S. dollars. This is an increase from the previous year, when the median household income in the state was 85,300 U.S. dollars. Median household income for the United States can be accessed here.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2019). Vital Signs: Jobs by Wage Level - Metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Metro/bt32-8udw

Vital Signs: Jobs by Wage Level - Metro

Explore at:
csv, tsv, application/rssxml, application/rdfxml, xml, jsonAvailable download formats
Dataset updated
Jan 18, 2019
Description

VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

LAST UPDATED January 2019

DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

American Community Survey (2001-2017) http://api.census.gov

CONTACT INFORMATION vitalsigns.info@bayareametro.gov

METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

Search
Clear search
Close search
Google apps
Main menu