29 datasets found
  1. Average load time for mobile sites in APAC 2018, by country

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average load time for mobile sites in APAC 2018, by country [Dataset]. https://www.statista.com/statistics/1034822/apac-average-mobile-site-load-time-by-country/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2018
    Area covered
    Asia–Pacific
    Description

    Within the Asia Pacific region, China had the fastest load time for mobile sites with *** seconds, followed by Singapore with an average load time of seven seconds. Nevertheless, the load times are still slower than the recommended load time of ***** seconds. The same research found that for every second of delay in mobile site load time, there was a ** percent drop in conversions.

  2. a

    Digital Divide Index - Average Upload Speed (Ookla)

    • hub.arcgis.com
    Updated Sep 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timmons@WACOM (2023). Digital Divide Index - Average Upload Speed (Ookla) [Dataset]. https://hub.arcgis.com/maps/6fe43f9397004d45a398c64a056cab90
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Timmons@WACOM
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This data is used for a broadband mapping initiative conducted by the Washington State Broadband Office.This dataset provides global fixed broadband and mobile (cellular) network performance metrics in zoom level 16 web mercator tiles (approximately 610.8 meters by 610.8 meters at the equator). Data is projected in EPSG:4326. Download speed, upload speed, and latency are collected via the Speedtest by Ookla applications for Android and iOS and averaged for each tile. Measurements are filtered to results containing GPS-quality location accuracy. The data was processed and published to ArcGIS Living Atlas by Esri.AboutSpeedtest data is used today by commercial fixed and mobile network operators around the world to inform network buildout, improve global Internet quality, and increase Internet accessibility. Government regulators such as the United States Federal Communications Commission and the Malaysian Communications and Multimedia Commission use Speedtest data to hold telecommunications entities accountable and direct funds for rural and urban connectivity development. Ookla licenses data to NGOs and educational institutions to fulfill its mission: to help make the internet better, faster and more accessible for everyone. Ookla hopes to further this mission by distributing the data to make it easier for individuals and organizations to use it for the purposes of bridging the social and economic gaps between those with and without modern Internet access.DataTilesHundreds of millions of Speedtests are taken on the Ookla platform each month. In order to create a manageable dataset, we aggregate raw data into tiles. The size of a data tile is defined as a function of "zoom level" (or "z"). At z=0, the size of a tile is the size of the whole world. At z=1, the tile is split in half vertically and horizontally, creating 4 tiles that cover the globe. This tile-splitting continues as zoom level increases, causing tiles to become exponentially smaller as we zoom into a given region. By this definition, tile sizes are actually some fraction of the width/height of Earth according to Web Mercator projection (EPSG:3857). As such, tile size varies slightly depending on latitude, but tile sizes can be estimated in meters.For the purposes of these layers, a zoom level of 16 (z=16) is used for the tiling. This equates to a tile that is approximately 610.8 meters by 610.8 meters at the equator (18 arcsecond blocks). The geometry of each tile is represented in WGS 84 (EPSG:4326) in the tile field.The data can be found at: https://github.com/teamookla/ookla-open-dataUpdate Cadence The tile aggregates start in Q1 2019 and go through the most recent quarter. They will be updated shortly after the conclusion of the quarter.Esri ProcessingThis layer is a best available aggregation of the original Ookla dataset. This means that for each tile that data is available, the most recent data is used. So for instance, if data is available for a tile for Q2 2019 and for Q4 2020, the Q4 2020 data is awarded to the tile. The default visualization for the layer is the "broadband index". The broadband index is a bivariate index based on both the average download speed and the average upload speed. For Mobile, the score is indexed to a standard of 25 megabits per second (Mbps) download and 3 Mbps upload. A tile with average Speedtest results of 25/3 Mbps is awarded 100 points. Tiles with average speeds above 25/3 are shown in green, tiles with average speeds below this are shown in fuchsia. For Fixed, the score is indexed to a standard of 100 Mbps download and 3 Mbps upload. A tile with average Speedtest results of 100/20 Mbps is awarded 100 points. Tiles with average speeds above 100/20 are shown in green, tiles with average speeds below this are shown in fuchsia.Tile Attributes Each tile contains the following adjoining attributes:The year and the quarter that the tests were performed.The average download speed of all tests performed in the tile, represented in megabits per second.The average upload speed of all tests performed in the tile, represented in megabits per second.The average latency of all tests performed in the tile, represented in millisecondsThe number of tests taken in the tile.The number of unique devices contributing tests in the tile.The quadkey representing the tile.QuadkeysQuadkeys can act as a unique identifier for the tile. This can be useful for joining data spatially from multiple periods (quarters), creating coarser spatial aggregations without using geospatial functions, spatial indexing, partitioning, and an alternative for storing and deriving the tile geometry.LayersThere are two layers:Ookla_Mobile_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a cellular connection type (e.g. 4G LTE, 5G NR).Ookla_Fixed_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a non-cellular connection type (e.g. WiFi, ethernet).The layers are set to draw at scales 1:3,000,000 and larger.Time Period and Update FrequencyLayers are generated based on a quarter year of data (three months) and files will be updated and added on a quarterly basis. A /year=2020/quarter=1/ period, the first quarter of the year 2020, would include all data generated on or after 2020-01-01 and before 2020-04-01.

  3. a

    Digital Divide Index - Average Download Speed (Ookla)

    • broadband-wacommerce.hub.arcgis.com
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timmons@WACOM (2023). Digital Divide Index - Average Download Speed (Ookla) [Dataset]. https://broadband-wacommerce.hub.arcgis.com/maps/2f2f84805e2c4a319bd9b990ac5ba167
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Timmons@WACOM
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This data is used for a broadband mapping initiative conducted by the Washington State Broadband Office. This dataset provides global fixed broadband and mobile (cellular) network performance metrics in zoom level 16 web mercator tiles (approximately 610.8 meters by 610.8 meters at the equator). Data is projected in EPSG:4326. Download speed, upload speed, and latency are collected via the Speedtest by Ookla applications for Android and iOS and averaged for each tile. Measurements are filtered to results containing GPS-quality location accuracy. The data was processed and published to ArcGIS Living Atlas by Esri.AboutSpeedtest data is used today by commercial fixed and mobile network operators around the world to inform network buildout, improve global Internet quality, and increase Internet accessibility. Government regulators such as the United States Federal Communications Commission and the Malaysian Communications and Multimedia Commission use Speedtest data to hold telecommunications entities accountable and direct funds for rural and urban connectivity development. Ookla licenses data to NGOs and educational institutions to fulfill its mission: to help make the internet better, faster and more accessible for everyone. Ookla hopes to further this mission by distributing the data to make it easier for individuals and organizations to use it for the purposes of bridging the social and economic gaps between those with and without modern Internet access.DataHundreds of millions of Speedtests are taken on the Ookla platform each month. In order to create a manageable dataset, we aggregate raw data into tiles. The size of a data tile is defined as a function of "zoom level" (or "z"). At z=0, the size of a tile is the size of the whole world. At z=1, the tile is split in half vertically and horizontally, creating 4 tiles that cover the globe. This tile-splitting continues as zoom level increases, causing tiles to become exponentially smaller as we zoom into a given region. By this definition, tile sizes are actually some fraction of the width/height of Earth according to Web Mercator projection (EPSG:3857). As such, tile size varies slightly depending on latitude, but tile sizes can be estimated in meters.For the purposes of these layers, a zoom level of 16 (z=16) is used for the tiling. This equates to a tile that is approximately 610.8 meters by 610.8 meters at the equator (18 arcsecond blocks). The geometry of each tile is represented in WGS 84 (EPSG:4326) in the tile field.The data can be found at: https://github.com/teamookla/ookla-open-dataUpdate CadenceThe tile aggregates start in Q1 2019 and go through the most recent quarter. They will be updated shortly after the conclusion of the quarter.Esri ProcessingThis layer is a best available aggregation of the original Ookla dataset. This means that for each tile that data is available, the most recent data is used. So for instance, if data is available for a tile for Q2 2019 and for Q4 2020, the Q4 2020 data is awarded to the tile. The default visualization for the layer is the "broadband index". The broadband index is a bivariate index based on both the average download speed and the average upload speed. For Mobile, the score is indexed to a standard of 25 megabits per second (Mbps) download and 3 Mbps upload. A tile with average Speedtest results of 25/3 Mbps is awarded 100 points. Tiles with average speeds above 25/3 are shown in green, tiles with average speeds below this are shown in fuchsia. For Fixed, the score is indexed to a standard of 100 Mbps download and 3 Mbps upload. A tile with average Speedtest results of 100/20 Mbps is awarded 100 points. Tiles with average speeds above 100/20 are shown in green, tiles with average speeds below this are shown in fuchsia.Tile AttributesEach tile contains the following adjoining attributes:The year and the quarter that the tests were performed.The average download speed of all tests performed in the tile, represented in megabits per second.The average upload speed of all tests performed in the tile, represented in megabits per second.The average latency of all tests performed in the tile, represented in millisecondsThe number of tests taken in the tile.The number of unique devices contributing tests in the tile.The quadkey representing the tile.QuadkeysQuadkeys can act as a unique identifier for the tile. This can be useful for joining data spatially from multiple periods (quarters), creating coarser spatial aggregations without using geospatial functions, spatial indexing, partitioning, and an alternative for storing and deriving the tile geometry.LayersThere are two layers:Ookla_Mobile_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a cellular connection type (e.g. 4G LTE, 5G NR).Ookla_Fixed_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a non-cellular connection type (e.g. WiFi, ethernet).The layers are set to draw at scales 1:3,000,000 and larger.Time Period and update Frequency Layers are generated based on a quarter year of data (three months) and files will be updated and added on a quarterly basis. A /year=2020/quarter=1/ period, the first quarter of the year 2020, would include all data generated on or after 2020-01-01 and before 2020-04-01.

  4. a

    Average Download Speed Ookla

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Sep 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timmons@WACOM (2023). Average Download Speed Ookla [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/6fe43f9397004d45a398c64a056cab90
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Timmons@WACOM
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This data is used for a broadband mapping initiative conducted by the Washington State Broadband Office.This dataset provides global fixed broadband and mobile (cellular) network performance metrics in zoom level 16 web mercator tiles (approximately 610.8 meters by 610.8 meters at the equator). Data is projected in EPSG:4326. Download speed, upload speed, and latency are collected via the Speedtest by Ookla applications for Android and iOS and averaged for each tile. Measurements are filtered to results containing GPS-quality location accuracy. The data was processed and published to ArcGIS Living Atlas by Esri.AboutSpeedtest data is used today by commercial fixed and mobile network operators around the world to inform network buildout, improve global Internet quality, and increase Internet accessibility. Government regulators such as the United States Federal Communications Commission and the Malaysian Communications and Multimedia Commission use Speedtest data to hold telecommunications entities accountable and direct funds for rural and urban connectivity development. Ookla licenses data to NGOs and educational institutions to fulfill its mission: to help make the internet better, faster and more accessible for everyone. Ookla hopes to further this mission by distributing the data to make it easier for individuals and organizations to use it for the purposes of bridging the social and economic gaps between those with and without modern Internet access.DataTilesHundreds of millions of Speedtests are taken on the Ookla platform each month. In order to create a manageable dataset, we aggregate raw data into tiles. The size of a data tile is defined as a function of "zoom level" (or "z"). At z=0, the size of a tile is the size of the whole world. At z=1, the tile is split in half vertically and horizontally, creating 4 tiles that cover the globe. This tile-splitting continues as zoom level increases, causing tiles to become exponentially smaller as we zoom into a given region. By this definition, tile sizes are actually some fraction of the width/height of Earth according to Web Mercator projection (EPSG:3857). As such, tile size varies slightly depending on latitude, but tile sizes can be estimated in meters.For the purposes of these layers, a zoom level of 16 (z=16) is used for the tiling. This equates to a tile that is approximately 610.8 meters by 610.8 meters at the equator (18 arcsecond blocks). The geometry of each tile is represented in WGS 84 (EPSG:4326) in the tile field.The data can be found at: https://github.com/teamookla/ookla-open-dataUpdate Cadence The tile aggregates start in Q1 2019 and go through the most recent quarter. They will be updated shortly after the conclusion of the quarter.Esri ProcessingThis layer is a best available aggregation of the original Ookla dataset. This means that for each tile that data is available, the most recent data is used. So for instance, if data is available for a tile for Q2 2019 and for Q4 2020, the Q4 2020 data is awarded to the tile. The default visualization for the layer is the "broadband index". The broadband index is a bivariate index based on both the average download speed and the average upload speed. For Mobile, the score is indexed to a standard of 25 megabits per second (Mbps) download and 3 Mbps upload. A tile with average Speedtest results of 25/3 Mbps is awarded 100 points. Tiles with average speeds above 25/3 are shown in green, tiles with average speeds below this are shown in fuchsia. For Fixed, the score is indexed to a standard of 100 Mbps download and 3 Mbps upload. A tile with average Speedtest results of 100/20 Mbps is awarded 100 points. Tiles with average speeds above 100/20 are shown in green, tiles with average speeds below this are shown in fuchsia.Tile Attributes Each tile contains the following adjoining attributes:The year and the quarter that the tests were performed.The average download speed of all tests performed in the tile, represented in megabits per second.The average upload speed of all tests performed in the tile, represented in megabits per second.The average latency of all tests performed in the tile, represented in millisecondsThe number of tests taken in the tile.The number of unique devices contributing tests in the tile.The quadkey representing the tile.QuadkeysQuadkeys can act as a unique identifier for the tile. This can be useful for joining data spatially from multiple periods (quarters), creating coarser spatial aggregations without using geospatial functions, spatial indexing, partitioning, and an alternative for storing and deriving the tile geometry.LayersThere are two layers:Ookla_Mobile_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a cellular connection type (e.g. 4G LTE, 5G NR).Ookla_Fixed_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a non-cellular connection type (e.g. WiFi, ethernet).The layers are set to draw at scales 1:3,000,000 and larger.Time Period and Update FrequencyLayers are generated based on a quarter year of data (three months) and files will be updated and added on a quarterly basis. A /year=2020/quarter=1/ period, the first quarter of the year 2020, would include all data generated on or after 2020-01-01 and before 2020-04-01.

  5. c

    Ookla Speedtest for Global Broadband Performance

    • geodata.colorado.gov
    • hub.arcgis.com
    Updated Jan 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). Ookla Speedtest for Global Broadband Performance [Dataset]. https://geodata.colorado.gov/maps/048da3d1818b4d0b95ec526b9e642719
    Explore at:
    Dataset updated
    Jan 13, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    AboutSpeedtest data is used today by commercial fixed and mobile network operators around the world to inform network buildout, improve global Internet quality, and increase Internet accessibility. Government regulators such as the United States Federal Communications Commission and the Malaysian Communications and Multimedia Commission use Speedtest data to hold telecommunications entities accountable and direct funds for rural and urban connectivity development. Ookla licenses data to NGOs and educational institutions to fulfill its mission: to help make the internet better, faster and more accessible for everyone. Ookla hopes to further this mission by distributing the data to make it easier for individuals and organizations to use it for the purposes of bridging the social and economic gaps between those with and without modern Internet access.DataOverviewTilesHundreds of millions of Speedtests are taken on the Ookla platform each month. In order to create a manageable dataset, we aggregate raw data into tiles. The size of a data tile is defined as a function of "zoom level" (or "z"). At z=0, the size of a tile is the size of the whole world. At z=1, the tile is split in half vertically and horizontally, creating 4 tiles that cover the globe. This tile-splitting continues as zoom level increases, causing tiles to become exponentially smaller as we zoom into a given region. By this definition, tile sizes are actually some fraction of the width/height of Earth according to Web Mercator projection (EPSG:3857). As such, tile size varies slightly depending on latitude, but tile sizes can be estimated in meters.For the purposes of these layers, a zoom level of 16 (z=16) is used for the tiling. This equates to a tile that is approximately 610.8 meters by 610.8 meters at the equator (18 arcsecond blocks). The geometry of each tile is represented in WGS 84 (EPSG:4326) in the tile field.The data can be found at: https://github.com/teamookla/ookla-open-dataUpdate CadenceThe tile aggregates start in Q1 2019 and go through the most recent quarter. They will be updated shortly after the conclusion of the quarter.Esri ProcessingThis layer is a best available aggregation of the original Ookla dataset. This means that for each tile that data is available, the most recent data is used. So for instance, if data is available for a tile for Q2 2019 and for Q4 2020, the Q4 2020 data is awarded to the tile. The default visualization for the layer is the "broadband index". The broadband index is a bivariate index based on both the average download speed and the average upload speed. For Mobile, the score is indexed to a standard of 35 megabits per second (Mbps) download and 3 Mbps upload. A tile with average Speedtest results of 25/3 Mbps is awarded 100 points. Tiles with average speeds above 25/3 are shown in green, tiles with average speeds below this are shown in fuchsia. For Fixed, the score is indexed to a standard of 100 Mbps download and 3 Mbps upload. A tile with average Speedtest results of 100/20 Mbps is awarded 100 points. Tiles with average speeds above 100/20 are shown in green, tiles with average speeds below this are shown in fuchsia.Tile AttributesEach tile contains the following attributes:The year and the quarter that the tests were performed.The average download speed of all tests performed in the tile, represented in megabits per second.The average upload speed of all tests performed in the tile, represented in megabits per second.The average latency of all tests performed in the tile, represented in millisecondsThe number of tests taken in the tile.The number of unique devices contributing tests in the tile.The quadkey representing the tile.QuadkeysQuadkeys can act as a unique identifier for the tile. This can be useful for joining data spatially from multiple periods (quarters), creating coarser spatial aggregations without using geospatial functions, spatial indexing, partitioning, and an alternative for storing and deriving the tile geometry.LayersThere are two layers:Ookla_Mobile_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a cellular connection type (e.g. 4G LTE, 5G NR).Ookla_Fixed_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a non-cellular connection type (e.g. WiFi, ethernet).The layers are set to draw at scales 1:3,000,000 and larger.Time Period and Update FrequencyLayers are generated based on a quarter year of data (three months) and files will be updated and added on a quarterly basis. A year=2020/quarter=1, the first quarter of the year 2020, would include all data generated on or after 2020-01-01 and before 2020-04-01.Data is subject to be reaggregated regularly in order to honor Data Subject Access Requests (DSAR) as is applicable in certain jurisdictions under laws including but not limited to General Data Protection Regulation (GDPR), California Consumer Privacy Act (CCPA), and Lei Geral de Proteção de Dados (LGPD). Therefore, data accessed at different times may result in variation in the total number of tests, tiles, and resulting performance metrics.

  6. U.S. states with the fastest average internet speed 2018

    • statista.com
    Updated Jan 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). U.S. states with the fastest average internet speed 2018 [Dataset]. https://www.statista.com/statistics/467217/average-internet-connection-speed-by-state/
    Explore at:
    Dataset updated
    Jan 18, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide, United States
    Description

    It is a painful reality for many internet users that not all online connections are created equally – this is something that online users in low-density and rural U.S. states can attest to. According to August 2018 data, New Jersey was the U.S. state with the fastest internet connection with an average connection speed of 52 Mbps. Montana ranked last with an average connection speed of 20.3 Mbps. Internet speed in the United States There are many U.S. cities that are bustling hubs for tech companies and startups and it is no surprise that connectivity and innovation go hand in hand. According to data from the third quarter of 2018, Kansas City, Missouri had access to fixed internet connections with the fastest average download speed in the United States at 159.19 Megabits per second and also scored highest for average upload speed with 127.03 Mbps. In 2011, Kansas City, MO was selected as one of the first cities to receive Google Fiber, Google’s then newly launched broadband internet service. Other notable metro areas in the ranking of the cities with the fastest upload and download speeds include Texas tech heavyweights Austin and San Antonio, as well as San Francisco, California and Boston, Massachusetts. Mobile internet connectivity in the United States As of the first quarter of 2019, over 40 percent of website traffic in the United States was via mobile device. Mobile internet adoption is driven by availability and cost – in 2018, the estimated average price of cellular data per gigabyte in the United States was 4.64 U.S. dollars. However, the cost per mobile GB is projected to decrease to 2.75 U.S. dollars by 2023. In the third quarter of 2018, Minneapolis, Minnesota had access to the fastest average mobile download speed in the United States at 44.92 Megabits per second, and also scored highest for average upload speed with 14.26 Mbps.

  7. a

    Ookla Fixed Broadband Tiles - Speed Categories

    • broadband-wacommerce.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timmons@WACOM (2023). Ookla Fixed Broadband Tiles - Speed Categories [Dataset]. https://broadband-wacommerce.hub.arcgis.com/items/5ca40d9671494a4480dcd957644fc6e0
    Explore at:
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Timmons@WACOM
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    AboutSpeedtest data is used today by commercial fixed and mobile network operators around the world to inform network buildout, improve global Internet quality, and increase Internet accessibility. Government regulators such as the United States Federal Communications Commission and the Malaysian Communications and Multimedia Commission use Speedtest data to hold telecommunications entities accountable and direct funds for rural and urban connectivity development. Ookla licenses data to NGOs and educational institutions to fulfill its mission: to help make the internet better, faster and more accessible for everyone. Ookla hopes to further this mission by distributing the data to make it easier for individuals and organizations to use it for the purposes of bridging the social and economic gaps between those with and without modern Internet access.DataOverviewTilesHundreds of millions of Speedtests are taken on the Ookla platform each month. In order to create a manageable dataset, we aggregate raw data into tiles. The size of a data tile is defined as a function of "zoom level" (or "z"). At z=0, the size of a tile is the size of the whole world. At z=1, the tile is split in half vertically and horizontally, creating 4 tiles that cover the globe. This tile-splitting continues as zoom level increases, causing tiles to become exponentially smaller as we zoom into a given region. By this definition, tile sizes are actually some fraction of the width/height of Earth according to Web Mercator projection (EPSG:3857). As such, tile size varies slightly depending on latitude, but tile sizes can be estimated in meters.For the purposes of these layers, a zoom level of 16 (z=16) is used for the tiling. This equates to a tile that is approximately 610.8 meters by 610.8 meters at the equator (18 arcsecond blocks). The geometry of each tile is represented in WGS 84 (EPSG:4326) in the tile field.The data can be found at: https://github.com/teamookla/ookla-open-dataUpdate CadenceThe tile aggregates start in Q1 2019 and go through the most recent quarter. They will be updated shortly after the conclusion of the quarter.Esri ProcessingThis layer is a best available aggregation of the original Ookla dataset. This means that for each tile that data is available, the most recent data is used. So for instance, if data is available for a tile for Q2 2019 and for Q4 2020, the Q4 2020 data is awarded to the tile. The default visualization for the layer is the "broadband index". The broadband index is a bivariate index based on both the average download speed and the average upload speed. For Mobile, the score is indexed to a standard of 25 megabits per second (Mbps) download and 3 Mbps upload. A tile with average Speedtest results of 25/3 Mbps is awarded 100 points. Tiles with average speeds above 25/3 are shown in green, tiles with average speeds below this are shown in fuchsia. For Fixed, the score is indexed to a standard of 100 Mbps download and 3 Mbps upload. A tile with average Speedtest results of 100/20 Mbps is awarded 100 points. Tiles with average speeds above 100/20 are shown in green, tiles with average speeds below this are shown in fuchsia.Tile AttributesEach tile contains the following adjoining attributes:The year and the quarter that the tests were performed.The average download speed of all tests performed in the tile, represented in megabits per second.The average upload speed of all tests performed in the tile, represented in megabits per second.The average latency of all tests performed in the tile, represented in millisecondsThe number of tests taken in the tile.The number of unique devices contributing tests in the tile.The quadkey representing the tile.QuadkeysQuadkeys can act as a unique identifier for the tile. This can be useful for joining data spatially from multiple periods (quarters), creating coarser spatial aggregations without using geospatial functions, spatial indexing, partitioning, and an alternative for storing and deriving the tile geometry.LayersThere are two layers:Ookla_Mobile_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a cellular connection type (e.g. 4G LTE, 5G NR).Ookla_Fixed_Tiles - Tiles containing tests taken from mobile devices with GPS-quality location and a non-cellular connection type (e.g. WiFi, ethernet).The layers are set to draw at scales 1:3,000,000 and larger.Time Period and Update FrequencyLayers are generated based on a quarter year of data (three months) and files will be updated and added on a quarterly basis. A /year=2020/quarter=1/ period, the first quarter of the year 2020, would include all data generated on or after 2020-01-01 and before 2020-04-01.

  8. d

    MD iMAP: Maryland Broadband Speed Test - County (Upload)

    • catalog.data.gov
    • opendata.maryland.gov
    • +1more
    Updated May 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    opendata.maryland.gov (2025). MD iMAP: Maryland Broadband Speed Test - County (Upload) [Dataset]. https://catalog.data.gov/dataset/md-imap-maryland-broadband-speed-test-county-upload
    Explore at:
    Dataset updated
    May 10, 2025
    Dataset provided by
    opendata.maryland.gov
    Area covered
    Maryland
    Description

    This is a MD iMAP hosted service layer. Find more information at http://imap.maryland.gov. This layer contains the average upload speed (mbps) per County. Last Updated: Feature Service Layer Link: https://mdgeodata.md.gov/imap/rest/services/UtilityTelecom/MD_BroadbandSpeedTest/MapServer ADDITIONAL LICENSE TERMS: The Spatial Data and the information therein (collectively "the Data") is provided "as is" without warranty of any kind either expressed implied or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct indirect incidental consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  9. Maryland Broadband Speed Test - ZIP Code (Upload)

    • data.imap.maryland.gov
    • hub.arcgis.com
    • +1more
    Updated Apr 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2016). Maryland Broadband Speed Test - ZIP Code (Upload) [Dataset]. https://data.imap.maryland.gov/datasets/maryland-broadband-speed-test-zip-code-upload
    Explore at:
    Dataset updated
    Apr 5, 2016
    Dataset provided by
    Authors
    ArcGIS Online for Maryland
    Area covered
    Description

    This layer contains the average upload speed (mbps) per zip code.Last Updated: UnknownThis is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/UtilityTelecom/MD_BroadbandSpeedTest/MapServer/5

  10. a

    Average Download Speed Ookla

    • broadband-wacommerce.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timmons@WACOM (2023). Average Download Speed Ookla [Dataset]. https://broadband-wacommerce.hub.arcgis.com/datasets/ccdf864e583a4c89ad8766fa5165ffbe
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Timmons@WACOM
    Area covered
    Description

    The Digital Divide Index or DDI ranges in value from 0 to 100, where 100 indicates the highest digital divide. It is composed of two scores, also ranging from 0 to 100: the infrastructure/adoption (INFA) score and the socioeconomic (SE) score.The INFA score groups five variables related to broadband infrastructure and adoption: (1) percentage of total 2020 population without access to fixed broadband of at least 100 Mbps download and 20 Mbps upload as of 2020 based on Ookla Speedtest® open dataset; (2) percent of homes without a computing device (desktops, laptops, smartphones, tablets, etc.); (3) percent of homes with no internet access (have no internet subscription, including cellular data plans or dial-up); (4) median maximum advertised download speeds; and (5) median maximum advertised upload speeds.The SE score groups five variables known to impact technology adoption: (1) percent population ages 65 and over; (2) percent population 25 and over with less than high school; (3) individual poverty rate; (4) percent of noninstitutionalized civilian population with a disability: and (5) a brand new digital inequality or internet income ratio measure (IIR). In other words, these variables indirectly measure adoption since they are potential predictors of lagging technology adoption or reinforcing existing inequalities that also affect adoption.These two scores are combined to calculate the overall DDI score. If a particular county or census tract has a higher INFA score versus a SE score, efforts should be made to improve broadband infrastructure. If on the other hand, a particular geography has a higher SE score versus an INFA score, efforts should be made to increase digital literacy and exposure to the technology’s benefits.The DDI measures primarily physical access/adoption and socioeconomic characteristics that may limit motivation, skills, and usage. Due to data limitations it was designed as a descriptive and pragmatic tool and is not intended to be comprehensive. Rather it should help initiate important discussions among community leaders and residents.

  11. Speedtest Open Data - Australia 2020 Q2, Q3, Q4 extract

    • figshare.com
    txt
    Updated May 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Richard Ferrers; Speedtest Global Index (2025). Speedtest Open Data - Australia 2020 Q2, Q3, Q4 extract [Dataset]. http://doi.org/10.6084/m9.figshare.13370504.v17
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 2, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Richard Ferrers; Speedtest Global Index
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    This is an Australian extract of Speedtest Open data available at Amazon WS (link below - opendata.aws).AWS data licence is "CC BY-NC-SA 4.0", so use of this data must be:- non-commercial (NC)- reuse must be share-alike (SA)(add same licence).This restricts the standard CC-BY Figshare licence.A world speedtest open data was dowloaded (>400Mb, 7M lines of data). An extract of Australia's location (lat, long) revealed 88,000 lines of data (attached as csv).A Jupyter notebook of extract process is attached.A link to Twitter thread of outputs provided.A link to Data tutorial provided (GitHub), including Jupyter Notebook to analyse World Speedtest data, selecting one US State.Data Shows: (Q2)- 3.1M speedtests- 762,000 devices- 88,000 grid locations (600m * 600m), summarised as a point- average speed 33.7Mbps (down), 12.4M (up)- Max speed 724Mbps- data is for 600m * 600m grids, showing average speed up/down, number of tests, and number of users (IP). Added centroid, and now lat/long.See tweet of image of centroids also attached.Versions:v15/16. Add Hist comparing Q1-21 vs Q2-20. Inc ipynb (incHistQ121, v.1.3-Q121) to calc.v14 Add AUS Speedtest Q1 2021 geojson.(79k lines avg d/l 45.4Mbps)v13 - Added three colour MELB map (less than 20Mbps, over 90Mbps, 20-90Mbps)v12 - Added AUS - Syd - Mel Line Chart Q320.v11 - Add line chart compare Q2, Q3, Q4 plus Melb - result virtually indistinguishable. Add line chart to compare Syd - Melb Q3. Also virtually indistinguishable. Add HIST compare Syd - Melb Q3. Add new Jupyter with graph calcs (nbn-AUS-v1.3). Some ERRATA document in Notebook. Issue with resorting table, and graphing only part of table. Not an issue if all lines of table graphed.v10 - Load AURIN sample pics. Speedtest data loaded to AURIN geo-analytic platform; requires edu.au login.v9 - Add comparative Q2, Q3, Q4 Hist pic.v8 - Added Q4 data geojson. Add Q3, Q4 Hist pic.v7 - Rename to include Q2, Q3 in Title.v6 - Add Q3 20 data. Rename geojson AUS data as Q2. Add comparative Histogram. Calc in International.ipynb.v5 - add Jupyter Notebook inc Histograms. Hist is count of geo-locations avg download speed (unweighted by tests).v4 - added Melb choropleth (png 50Mpix) inc legend. (To do - add Melb.geojson). Posted Link to AURIN description of Speedtest data.v3 - Add super fast data (>100Mbps) less than 1% of data - 697 lines. Includes png of superfast.plot(). Link below to Google Maps version of superfast data points. Also Google map of first 100 data points - sample data. Geojson format for loading into GeoPandas, per Jupyter Notebook. New version of Jupyter Notebook, v.1.1.v2 - add centroids image.v1 - initial data load.** Future Work- combine Speedtest data with NBN Technology by location data (national map.gov.au); https://www.data.gov.au/dataset/national-broadband-network-connections-by-technology-type- combine Speedtest data with SEIFA data - socioeconomic categories - to discuss with AURIN.- Further international comparisons- discussed collaboration with Assoc Prof Tooran Alizadeh, USyd.

  12. g

    Average broadband download speed (Mb/s) | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Average broadband download speed (Mb/s) | gimi9.com [Dataset]. https://gimi9.com/dataset/uk_kpi-cjge89/
    Explore at:
    Description

    🇬🇧 영국

  13. Median global mobile and fixed broadband download & upload speed worldwide...

    • statista.com
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Median global mobile and fixed broadband download & upload speed worldwide 2024 [Dataset]. https://www.statista.com/statistics/896779/average-mobile-fixed-broadband-download-upload-speeds/
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    Worldwide
    Description

    As of March 2025, the median download speeds of mobile and fixed broadband services worldwide were within a similar range, at 90.64 and 98.31 Mbps respectively. However, the median upload speed for fixed broadband was significantly higher than that of mobile, with fixed services more suitable for data-intensive online activities such as multiplayer gaming.

  14. m

    Maryland Broadband Speed Test - County (Upload)

    • data.imap.maryland.gov
    • hub.arcgis.com
    • +2more
    Updated Apr 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2016). Maryland Broadband Speed Test - County (Upload) [Dataset]. https://data.imap.maryland.gov/datasets/maryland-broadband-speed-test-county-upload
    Explore at:
    Dataset updated
    Apr 5, 2016
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    This layer contains the average upload speed (mbps) per County.Last Updated: UnknownThis is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://mdgeodata.md.gov/imap/rest/services/UtilityTelecom/MD_BroadbandSpeedTest/MapServer/4

  15. m

    Maryland Broadband Speed Test - Census Block (Upload)

    • data.imap.maryland.gov
    Updated Apr 5, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online for Maryland (2016). Maryland Broadband Speed Test - Census Block (Upload) [Dataset]. https://data.imap.maryland.gov/datasets/b47266bb36004f5c870158bb352c33f5
    Explore at:
    Dataset updated
    Apr 5, 2016
    Dataset authored and provided by
    ArcGIS Online for Maryland
    Area covered
    Description

    This layer contains the average upload speed (mbps) per census block.Last Updated: UnknownThis is a MD iMAP hosted service layer. Find more information at https://imap.maryland.gov.Feature Service Layer Link:https://geodata.md.gov/imap/rest/services/UtilityTelecom/MD_BroadbandSpeedTest/MapServer/3**Please note, due to the size of this dataset, you may receive an error message when trying to download the dataset. You can download this dataset directly from MD iMAP Services at: https://geodata.md.gov/imap/rest/services/UtilityTelecom/MD_BroadbandSpeedTest/MapServer/exts/MDiMAPDataDownload/customLayers/3**

  16. Average upload speed of mobile network Indonesia 2022, by type

    • statista.com
    Updated Jul 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Average upload speed of mobile network Indonesia 2022, by type [Dataset]. https://www.statista.com/statistics/1339063/indonesia-average-upload-speed-by-type/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Indonesia
    Description

    As of May 2022, the average upload speed on Indonesia's 5G network was **** Mbps, while the average 4G upload speed reached *** Mbps. This shows that Indonesia's 5G mobile average upload speed was *** times faster than its 4G network over the same period.

  17. Mobile & fixed broadband internet download & upload speed in Mexico 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Mobile & fixed broadband internet download & upload speed in Mexico 2024 [Dataset]. https://www.statista.com/statistics/1135115/mexico-internet-speed/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2024
    Area covered
    Mexico
    Description

    In August 2024, Mexico's median mobile internet download speed was ***** Mbps, while the median fixed broadband download speed was just under ** Mbps. Moreover, over *** million Mexicans were forecast to be internet users by the end of 2024.

  18. Mobile download speed in Colombia 2024, by provider

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Mobile download speed in Colombia 2024, by provider [Dataset]. https://www.statista.com/statistics/977149/mobile-download-speed-provider-colombia/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 1, 2023 - Nov 29, 2023
    Area covered
    Colombia
    Description

    As of January 2024, the average mobile download speed on Tigo network in Colombia was **** megabits per second. However, Claro - an América Móvil brand - was the largest wireless operator in the South American country.

  19. Download speed of mobile and fixed internet connections in Egypt 2023

    • statista.com
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Download speed of mobile and fixed internet connections in Egypt 2023 [Dataset]. https://www.statista.com/statistics/1307409/median-download-speed-of-mobile-and-fixed-internet-connections-in-egypt/
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2022
    Area covered
    Egypt
    Description

    As of November 2023, the median download speed of cellular mobile internet connections in Egypt was ***** megabits per second (Mbps). Alternatively, download speeds for fixed internet connections were higher, reaching ***** Mbps. It is worth noting that the web traffic in the country was slightly higher through mobile phones than laptops and desktop computers.

  20. Countries with the fastest average fixed broadband internet speed worldwide...

    • statista.com
    • ai-chatbox.pro
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the fastest average fixed broadband internet speed worldwide 2025 [Dataset]. https://www.statista.com/statistics/896772/countries-fastest-average-fixed-broadband-internet-speeds/
    Explore at:
    Dataset updated
    Mar 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    Worldwide
    Description

    As of March 2025, Singapore had the fastest fixed broadband internet worldwide, with an average download speed of 345.33 Mbps. The UAE ranked second at 313.55 Mbps, while Hong Kong followed in third. Fixed internet connections deliver broadband to a home, office, or other fixed premises, with fiber connections offering the best quality service.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Average load time for mobile sites in APAC 2018, by country [Dataset]. https://www.statista.com/statistics/1034822/apac-average-mobile-site-load-time-by-country/
Organization logo

Average load time for mobile sites in APAC 2018, by country

Explore at:
Dataset updated
Jul 9, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2018
Area covered
Asia–Pacific
Description

Within the Asia Pacific region, China had the fastest load time for mobile sites with *** seconds, followed by Singapore with an average load time of seven seconds. Nevertheless, the load times are still slower than the recommended load time of ***** seconds. The same research found that for every second of delay in mobile site load time, there was a ** percent drop in conversions.

Search
Clear search
Close search
Google apps
Main menu