How many incorporated places are registered in the U.S.?
There were 19,502 incorporated places registered in the United States as of July 31, 2019. 16,410 had a population under 10,000 while, in contrast, only 10 cities had a population of one million or more.
Small-town America
Suffice it to say, almost nothing is more idealized in the American imagination than small-town America. When asked where they would prefer to live, 30 percent of Americans reported that they would prefer to live in a small town. Americans tend to prefer small-town living due to a perceived slower pace of life, close-knit communities, and a more affordable cost of living when compared to large cities.
An increasing population
Despite a preference for small-town life, metropolitan areas in the U.S. still see high population figures, with the New York, Los Angeles, and Chicago metro areas being the most populous in the country. Metro and state populations are projected to increase by 2040, so while some may move to small towns to escape city living, those small towns may become more crowded in the upcoming decades.
This link contains downloadable data for the Atlas of Rural and Small-Town America which provides statistics by broad categories of socioeconomic factors: People: Demographic data from the American Community Survey (ACS), including age, race and ethnicity, migration and immigration, education, household size, and family composition. Jobs: Economic data from the Bureau of Labor Statistics and other sources, including information on employment trends, unemployment, and industrial composition of employment from the ACS. County classifications: Categorical variables including the rural-urban continuum codes, economic dependence codes, persistent poverty, persistent child poverty, population loss, onshore oil/natural gas counties, and other ERS county typology codes. Income: Data on median household income, per capita income, and poverty (including child poverty). Veterans: Data on veterans, including service period, education, unemployment, income, and other demographic characteristics.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
A March 2025 study analyzed the small towns in Italy with a population of under 5,000 with the highest average monthly number of Google searches in the past 12 months. Based on the analysis, Maratea, in the southern region of Basilicata, recorded the highest figure, with an average of 111,140 monthly Google searches as of March 2025. San Vito Lo Capo in Sicily and Positano in Campania followed in the ranking, each with almost 92,000 monthly Google searches on average.
This dataset illustrates the largest difference between high and low temperatures and the smallest difference between high and low temperatures in cities with 50,000 people or more. A value of -1 means that the data was not applicable. Also included are the rankings, the inverse ranking to be used for mapping purposes, the popualtion, the name of city and state, and the temperature degree difference. Source City-Data URL http//www.city-data.com/top2/c489.html http//www.city-data.com/top2/c490.html Date Accessed November 13,2007
https://www.montana-demographics.com/terms_and_conditionshttps://www.montana-demographics.com/terms_and_conditions
A dataset listing Montana cities by population for 2024.
https://www.illinois-demographics.com/terms_and_conditionshttps://www.illinois-demographics.com/terms_and_conditions
A dataset listing Illinois cities by population for 2024.
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.
The Multiple Indicator Cluster Survey (MICS) is a household survey programme developed by UNICEF to assist countries in filling data gaps for monitoring human development in general and the situation of children and women in particular. MICS is capable of producing statistically sound, internationally comparable estimates of social indicators. The current round of MICS is focused on providing a monitoring tool for the Millennium Development Goals (MDGs), the World Fit for Children (WFFC), as well as for other major international commitments, such as the United Nations General Assembly Special Session (UNGASS) on HIV/AIDS and the Abuja targets for malaria.
Survey Objectives The 2005 Belarus Multiple Indicator Cluster Survey has as its primary objectives: - To provide up-to-date information for assessing the situation of children and women in Belarus - To furnish data needed for monitoring progress toward goals established in the Millennium Declaration, the goals of A World Fit For Children (WFFC), and other internationally agreed upon goals, as a basis for future action; - To contribute to the improvement of data and monitoring systems in Belarus and to strengthen technical expertise in the design, implementation, and analysis of such systems.
Survey Content MICS questionnaires are designed in a modular fashion that can be easily customized to the needs of a country. They consist of a household questionnaire, a questionnaire for women aged 15-49 and a questionnaire for children under the age of five (to be administered to the mother or caretaker). Other than a set of core modules, countries can select which modules they want to include in each questionnaire.
Survey Implementation The survey was carried out by the Ministry of Statistics and Analysis of the Republic of Belarus, and Research Institute of Statistics of the Ministry of Statistics and Analysis of the Republic of Belarus with the support and assistance of UNICEF and Ministry of Health. Technical assistance and training for the surveys is provided through a series of regional workshops, covering questionnaire content, sampling and survey implementation; data processing; data quality and data analysis; report writing and dissemination.
The survey is nationally representative and covers the whole of Belarus.
Households (defined as a group of persons who usually live and eat together)
De jure household members (defined as memers of the household who usually live in the household, which may include people who did not sleep in the household the previous night, but does not include visitors who slept in the household the previous night but do not usually live in the household)
Women aged 15-49
Children aged 0-4
The survey covered all de jure household members (usual residents), all women aged 15-49 years resident in the household, and all children aged 0-4 years (under age 5) resident in the household.
Sample survey data [ssd]
The principal objective of the sample design was to provide current and reliable estimates on a set of indicators covering the four major areas of the World Fit for Children declaration, including promoting healthy lives; providing quality education; protecting against abuse, exploitation and violence; and combating HIV/AIDS. The population covered by the 2005 MICS is defined as the universe of all women aged 15-49 and all children aged under 5. A sample of households was selected and all women aged 15-49 identified as usual residents of these households were interviewed. In addition, the mother or the caretaker of all children aged under 5 who were usual residents of the household were also interviewed about the child.
The 2005 MICS collected data from a nationally representative sample of households, women and children. The primary focus of the 2005 MICS was to provide estimates of key population and health, education, child protection and HIV related indicators for the country as a whole, and for urban and rural areas separately. In addition, the sample was designed to provide estimates for each of the 7 regions for key indicators. Belarus is divided into 7 regions. Each region is subdivided into big cities, small towns and rural areas (selskie sovety). In addition each unit was subdivided into polling stations in urban areas and rural settlements in selskie sovety. In total Belarus includes 20 big cities, 187 small cities and 1388 selskie soveties.
MICS3 is utilizing the sample frame of household surveys that is being used in the republic. To provide uniform distribution of the sample allocation of the households in the republic the selection was carried out in Brest, Vitebsk, Gomel, Grodno, Minsk, Mogilev regions and in Minsk city.
Three stage sampling has been carried out. At the first stage in each of the regions (oblasts) three sampling strata has been created: big cities, small towns and rural areas (selskie sovety); at the second stage - polling stations in urban areas and rural settlements in selskie sovety; at the third stage in the selected settlements the households were selected. Within the strata of big cities, at first stage, 20 big cities were selected with the probability equalling to 1. Within the strata of small towns 29 small towns were sampled systematically with pps and the measure of size was total population of the small towns. The number of small towns in every region (oblast) was selected based on division of the total number of population of all small towns of each region into average household size (2,6), sample share (1/600) and average load of interviewer (40).
Within the strata of rural settlements (selskie sovety) at the first stage of sampling 53 rural settlements were selected systematically with pps and the measure of size was number of households in the rural settlement.
On the second stage of sampling within the big cities and the small towns the polling stations were selected as sampling unit, in the rural settlements - settlements in rural area (selskie sovety).
To cover the whole territory of the selected city the cartographical materials were used on the second stage of sampling within the big cities. The number of the polling stations was calculated based on division of the population of the city into the average size of the family (2,6), sample share (1/600) and estimated number of the households in each polling station (20).
Three polling stations were selected in each small town from the list of the polling stations, ranking by number of voters. In rural areas, taking into account the difficulty of access and scattered nature of settlements, the territories of the rural areas (selskie sovety) were divided into zones and the closest rural settlements were grouped. One zone was selected in each rural area (selskie sovety) and within this zone all settlements were investigated.
Throughout the Republic of Belarus there were 304 polling stations and the rural zones in selskie sovery selected in 2005.
On the third stage of sampling, households were selected from the updated lists systematically taking into account the size of the cluster. In big cities the size of the cluster which is selected from the updated list households within the territory of polling station is 19-20 households, in small towns the size of the cluster is 13-14 households, and in rural areas the size of the cluster is 39-40 households.The size of clusters is not uniform. Variation in cluster sizes for urban and rural settlements was done on purpose since existing sampling plan was considering load of one interviewer, as one of the parameters, and distribution of sampled population into the sampling domains - proportionally to the distribution in general population.
Besides, taking into account the limited representation of children under 5 in the household sample, the additional sub-sample of households with children aged 0-4 was formed. For this purpose, in each of the 304 clusters the lists of households was updated with the information on households with under 5 children through local out-patient health institutions. From these lists with higher probability then for households without children, the households with children aged 0-4 were selected.
The resulting number of households for MICS3 sample in the Republic of Belarus was 7,000, including 2,857 households with children aged 0-4.
Following standard MICS data collection rules, if a household was actually more than one household when visited, then a) if the selected household contained two households, both were interviewed, or b) if the selected household contained 3 or more households, then only the household of the person named as the head was interviewed.
No major deviations from the original sample design were made. All sample enumeration areas were accessed and successfully interviewed with good response rates.
Face-to-face [f2f]
The questionnaires for the Belarus MICS were structured questionnaires based on the MICS3 Model Questionnaire. A household questionnaire was administered in each household, which collected various information on household members including sex, age, relationship, and orphanhood status. The household questionnaire includes household listing, education, water and sanitation, household characteristics, child labour, and child discipline.
In addition to a household questionnaire, questionnaires were administered in each household for women age 15-49 and children under age five. For children, the questionnaire was administered to the mother or
Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.
https://www.arkansas-demographics.com/terms_and_conditionshttps://www.arkansas-demographics.com/terms_and_conditions
A dataset listing Arkansas cities by population for 2024.
https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida cities by population for 2024.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Normal town, Illinois. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
https://www.newyork-demographics.com/terms_and_conditionshttps://www.newyork-demographics.com/terms_and_conditions
A dataset listing New York cities by population for 2024.
This dataset consists of housing unit, household, and population estimates for census tracts, census block groups, Transportation Analysis Zones (TAZs), school districts, and ZIP codes in the Twin Cities Region. These data provide a more precise and timely picture of current conditions than the American Community Survey, another source of small area data that is better suited for statistics like percentages and averages than for actual counts. It may be possible to calculate estimates for other small areas upon request; contact Research@metc.state.mn.us for more information.
In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
How many incorporated places are registered in the U.S.?
There were 19,502 incorporated places registered in the United States as of July 31, 2019. 16,410 had a population under 10,000 while, in contrast, only 10 cities had a population of one million or more.
Small-town America
Suffice it to say, almost nothing is more idealized in the American imagination than small-town America. When asked where they would prefer to live, 30 percent of Americans reported that they would prefer to live in a small town. Americans tend to prefer small-town living due to a perceived slower pace of life, close-knit communities, and a more affordable cost of living when compared to large cities.
An increasing population
Despite a preference for small-town life, metropolitan areas in the U.S. still see high population figures, with the New York, Los Angeles, and Chicago metro areas being the most populous in the country. Metro and state populations are projected to increase by 2040, so while some may move to small towns to escape city living, those small towns may become more crowded in the upcoming decades.