The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
The annual mean temperature in the United Kingdom has fluctuated greatly since 1990. Temperatures during this period were at their highest in 2022, surpassing 10 degrees Celsius. In 2010, the mean annual temperature stood at 7.94 degrees, the lowest recorded during this time. Daily temperatures Average daily temperatures have remained stable since the turn of the century, rarely dropping below 10 degrees Celsius. In 2010, they dropped to a low of nine degrees Celsius. The peak average daily temperature was recorded in 2022 when it reached 11.2 degrees. This was an increase of one degree Celsius compared to the long-term mean, and the most positive deviation during the period of consideration. Highs and lows The maximum average temperature recorded across the UK since 2015 was in July 2018. This month saw a maximum temperature of 22.6 degrees Celsius. In comparison, the lowest monthly minimum temperature was in February of the same year, at just minus 0.6 degrees. This was an especially cold February, as the previous year the minimum temperature for this month was 2.6 degrees.
England's highest monthly mean air temperatures are typically recorded in July and August of each year. Since 2015, the warmest mean temperature was measured in July 2018 at 18.8 degrees Celsius. On the other hand, February of that same year registered the coolest temperature, at 2.6 degrees Celsius. In February 2025, the mean air temperature was five degrees Celsius, 50 percent lower than the same month the previous year. The English weather England is the warmest region in the United Kingdom and the driest. In 2024, the average annual temperature in England amounted to 10.73 degrees Celsius – around 1.1 degrees above the national mean. That same year, precipitation in England stood at about 1,020 millimeters. By contrast, Scotland – the wettest region in the UK – recorded over 1,500 millimeters of rainfall in 2024. Temperatures on the rise Throughout the last decades, the average temperature in the United Kingdom has seen an upward trend, reaching a record high in 2022. Global temperatures have experienced a similar pattern over the same period. This gradual increase in the Earth's average temperature is primarily due to various human activities, such as burning fossil fuels and deforestation, which lead to the emission of greenhouse gases. This phenomenon has severe consequences, including more frequent and intense weather events, rising sea levels, and adverse effects on human health and the environment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in the United Kingdom increased to 10.14 celsius in 2023 from 10.13 celsius in 2022. This dataset includes a chart with historical data for the United Kingdom Average Temperature.
The average temperature across the United Kingdom presented a trend of continuous growth since 1961. During the first period, from 1961 to 1990, the country recorded an average temperature of 8.3 degrees Celsius. In the next period, from 1991 to 2020, the UK's average temperature increased by 0.8 degrees Celsius and increased further by 0.5 degrees Celsius between 2014 and 2023. In the latter year, figures remained at 10 degrees Celsius, 1.7 degrees warmer than the average recorded between 1961 and 1990, illustrating the effects of climate change. Nevertheless, 2022 was the warmest year in the United Kingdom.
These statistics show quarterly and monthly weather trends for:
They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.
Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.
All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.
If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.
The daily average temperature in the United Kingdom (UK) has remained relatively stable since 2001, with temperatures rarely straying below 10 degrees Celsius. In 2023, the UK had an average daily temperature of 11.1 degrees Celsius. This was the second-highest average daily temperature recorded since the turn of the century.
British summertime
Britain is not known for its blisteringly hot summer months, with the average temperatures in this season varying greatly since 1990. In 1993, the average summer temperature was as low as 13.39 degrees Celsius, whilst 2018 saw a peak of 15.8 degrees Celsius. In that same year, the highest mean temperature occurred in July at 17.2 degrees Celsius.
Variable weather
Due to its location and the fact that it is an island, the United Kingdom experiences a diverse range of weather, sometimes in the same day. It is in an area where five air masses meet, creating a weather front. Each brings different weather conditions, such as hot, dry air from North Africa and wet and cold air from the Arctic. Temperatures across the UK tend to be warmest in England.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily temperature data contain maximum and minimum temperatures (air, grass and concrete slab) measured over a period of up to 24 hours. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM, DLY3208 or AWSDLY messages. The data span from 1853 to 2023. For details on measurement techniques, including calibration information and changes in measurements, see section 5.2 of the MIDAS User Guide linked to from this record. Soil temperature data may be found in the UK soil temperature datasets linked from this record.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily temperature observations within the full MIDAS collection.
Seasonal mean temperatures in the United Kingdom have been on a mostly increasing trend since 1659. Between 2001 and 2023, the average temperature in summer and autumn in the UK stood at 16.2 and 11.1 degrees Celsius, respectively. During those same seasons, figures were at 14.9 and 9.1 degrees Celsius in the period from 1659 to 1700.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average percentage change between the 'lower' values before and after this update is -1%.]What does the data show? A Heating Degree Day (HDD) is a day in which the average temperature is below 15.5°C. It is the number of degrees above this threshold that counts as a Heating Degree Day. For example if the average temperature for a specific day is 15°C, this would contribute 0.5 Heating Degree Days to the annual sum, alternatively an average temperature of 10.5°C would contribute 5 Heating Degree Days. Given the data shows the annual sum of Heating Degree Days, this value can be above 365 in some parts of the UK.Annual Heating Degree Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of HDD to previous values.What are the possible societal impacts?Heating Degree Days indicate the energy demand for heating due to cold days. A higher number of HDD means an increase in power consumption for heating, therefore this index is useful for predicting future changes in energy demand for heating.What is a global warming level?Annual Heating Degree Days are calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Heating Degree Days, an average is taken across the 21 year period. Therefore, the Annual Heating Degree Days show the number of heating degree days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each warming level and two baselines. They are named ‘HDD’ (Heating Degree Days), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. E.g. 'HDD 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'HDD 2.5 median' is 'HDD_25_median'. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HDD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, Annual Heating Degree Days were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
The monthly mean temperature in the United Kingdom is typically highest in July and August. During this period, the monthly mean temperature peaked in July 2018, at 17.2 degrees Celsius. In January 2025, the UK recorded a mean temperature of three degrees Celsius, slightly lower than the temperature recorded the same month a year prior.
https://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdf
The longest available instrumental record of temperature in the world is now available at the BADC. The daily data starts in 1772.
The mean, minimum and maximum datasets are updated monthly, with data for a month usually available by the 3rd of the next month. A provisional CET value for the current month is calculated on a daily basis. The mean daily data series begins in 1772. Mean maximum and minimum daily and monthly data are also available, beginning in 1878. Yearly files are provided from 1998 onwards.
These historical temperature series are representative of the Midlands region in England, UK (a roughly triangular area of the United Kingdom enclosed by Bristol, Lancashire and London).
The following stations are used by the Met Office to compile the CET data: Rothamsted, Malvern, Squires Gate and Ringway.
But in November 2004, the weather station Stonyhurst replaced Ringway and revised urban warming and bias adjustments have now been applied to the Stonyhurst data after a period of reduced reliability from the station in the summer months.
The data set is compiled by the Met Office Hadley Centre.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.26°C.]What does the data show? This dataset shows the change in summer maximum air temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. The dataset uses projections of daily maximum air temperature from UKCP18. For each year, the highest daily maximum temperature from the summer period is found. These are then averaged to give values for the 1981-2000 baseline, recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer maximum temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Maximum Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Maximum Temperature Change an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tasmax summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tasmax summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tasmax summer change 2.0 median' is named 'tasmax_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tasmax summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Maximum Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
In 2024, the average summer temperature in the United Kingdom was 14.37 degrees Celsius. Over the time period from 1990 through 2024, the average summer temperature in the UK fluctuated from a low of 13.39 degrees in 1993 to a high of 15.76 degrees in 2018.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average temperature and total rainfall in England and Wales : 1845 to 2012. Annual and seasonal outflow and rainfall estimates for the United Kingdom and its component countries since 1961.
Rainfall figures are available from the National River Flow Archive - monthly hydrological updates.
The Environment Agency also publish monthly water situation reports for England.
Discontinued - superceded by http://www.ceh.ac.uk/data/nrfa/ & https://www.gov.uk/government/collections/water-situation-reports-for-england
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.0.]What does the data show? The Annual Count of Extreme Summer Days is the number of days per year where the maximum daily temperature is above 35°C. It measures how many times the threshold is exceeded (not by how much) in a year. Note, the term ‘extreme summer days’ is used to refer to the threshold and temperatures above 35°C outside the summer months also contribute to the annual count. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Extreme Summer Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of extreme summer days to previous values.What are the possible societal impacts?The Annual Count of Extreme Summer Days indicates increased health risks, transport disruption and damage to infrastructure from high temperatures. It is based on exceeding a maximum daily temperature of 35°C. Impacts include:Increased heat related illnesses, hospital admissions or death affecting not just the vulnerable. Transport disruption due to overheating of road and railway infrastructure.Other metrics such as the Annual Count of Summer Days (days above 25°C), Annual Count of Hot Summer Days (days above 30°C) and the Annual Count of Tropical Nights (where the minimum temperature does not fall below 20°C) also indicate impacts from high temperatures, however they use different temperature thresholds.What is a global warming level?The Annual Count of Extreme Summer Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Extreme Summer Days, an average is taken across the 21 year period. Therefore, the Annual Count of Extreme Summer Days show the number of extreme summer days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘ESD’ (where ESD means Extreme Summer Days, the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Extreme Summer Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Extreme Summer Days 2.5 median’ is ‘ExtremeSummerDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘ESD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Extreme Summer Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1999-2017 - London SWT Weather data
Header Row:Date and Time,Battery Voltage,CR10 Temperature,Wind Direction 10 Minutes,Wind Speed 10 Minutes,Wind Gust 10 Minutes,Hourly AverageDirection,Hourly Average Speed,Hourly Maximum Gust,Hourly Gust Time,Hourly Gust Direction,Last Minute Average Temperature,Total Hourly Rain,Average RH over previous minute,Maximum Hourly Air Temperature,Minimum Hourly Air Temperature,MaximumHourly Rainfall Rate,Time of Rainfall
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK hourly weather observation data contain meteorological values measured on an hourly time scale. The measurements of the concrete state, wind speed and direction, cloud type and amount, visibility, and temperature were recorded by observation stations operated by the Met Office across the UK and transmitted within SYNOP, DLY3208, AWSHRLY and NCM messages. The sunshine duration measurements were transmitted in the HSUN3445 message. The data spans from 1875 to 2019.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. Of particular note, however, is that as well as including data for 2019, historical data recovery has added temperature and weather data for Bude (1937-1958), Teignmouth (1912-1930), and Eskdalemuir (1915-1948).
For details on observing practice see the message type information in the MIDAS User Guide linked from this record and relevant sections for parameter types.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Note, METAR message types are not included in the Open version of this dataset. Those data may be accessed via the full MIDAS hourly weather data.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
For an urban heat island map during an average summer see this dataset. A heatwave refers to a prolonged period of unusually hot weather. While there is no standard definition of a heatwave in England, the Met Office uses the World Meteorological Organization definition of a heatwave, which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C, the normal period being 1961-1990". They are common in the northern and southern hemisphere during summer have historically been associated with health problems and an increase in mortality. The urban heat island (UHI) is the phenomenon where temperatures are relatively higher in cities compared to surrounding rural areas due to, for example, the urban surfaces and anthropogenic heat sources. This urban heat island map was produced using LondUM, a specific set-up of the Met Office Unified Model version 6.1 for London. It uses the Met Office Reading Surface Exchange Scheme (MORUSES), as well as urban morphology data derived from Virtual London. The model was run from May until September 2006 and December 2006. This map shows average surface temperatures over the summer period of 2006 at a 1km by 1km resolution. To find out more about LondUM, see the University of Reading’s website. The hourly outputs from LondUM have been aggregated and mapped by Jonathon Taylor, UCL Institute for Environmental Design and Engineering. Variables include: WSAVGMAX= the average of the maximum daily temperatures across the summer period (May 26th-August 31st) WSAVG=the average temperature across the summer period WSAVGMIN = the average minimum daily temperature across the summer period HWAVGMAX= the average of the maximum daily temperatures across the 2006 heatwave (July 16th-19th) HWAVG=the average temperature across the across the 2006 heatwave HWAVGMIN = the average minimum daily temperature across 2006 heatwave period The maps are also available as one combined PDF. The gif below maps the temperatures across London during the four-day period of 16-19th July, which was considered a heatwave. If you make use of the LondUM data, please use the following citation to acknowledge the data and reference the publication below for model description: LondUM (2011). Model data generated by Sylvia I. Bohnenstengel (), Department of Meteorology, University of Reading and data retrieved from http://www.met.reading.ac.uk/~sws07sib/home/LondUM.html. () Now at Metoffice@Reading, Email: sylvia.bohnenstengel@metoffice.gov.uk Bohnenstengel SI, Evans S, Clark P and Belcher SeE (2011) Simulations of the London Urban Heat island. Quarterly journal of the Royal Meteorological Society, 137(659). pp. 1625-1640. ISSN 1477-870X doi 10.1002/qj.855. LondUM data (2013).
This dataset is a model output, from the Grid-to-Grid hydrological model driven by weather@home2 climate model data. It provides a 100-member ensemble of monthly mean flow (m3/s) and soil moisture (mm water/m soil) on a 1 km grid for the following time periods: historical baseline (HISTBS: 1900-2006), near-future (NF: 2020-2049) and far-future (FF: 2070-2099). It also includes a baseline period (BS: 1975-2004). To aid interpretation, two additional spatial datasets are provided: - Digitally-derived catchment areas on a 1km x 1km grid - Estimated locations of flow gauging stations on a 1km x 1km grid and as a csv file. The data were produced as part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought and water scarcity.
The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.