13 datasets found
  1. Monthly average temperature in the United States 2020-2024

    • statista.com
    Updated Feb 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  2. d

    Spring Temperature Data Set from New York and New England

    • search.dataone.org
    • hydroshare.org
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dallas Abbott (2022). Spring Temperature Data Set from New York and New England [Dataset]. http://doi.org/10.4211/hs.ba3285fc8a7441f69f0c2279cb1502ef
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Dallas Abbott
    Area covered
    Description

    Title: Dataset: Temperatures and flow rates for some springs in New England, 2017-18

    Authors: Dallas Abbott1, William Menke1, Juliette Lamoureux2, Dionne Hutson2 and Alyssa Marrero3

    1Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 2City College of New York, New York, New York 3Kingsborough Community College, Brooklyn, New York Summary: In 2017-2018, we visited a suite of about 80 springs in New York and New England (USA). We measured water temperature with a Lascar EL-WIFI-TP digital temperature logger (0.1°C precision) at the closest accessible point to the source, which was usually the reservoir inside a spring house or the outflow pipe from a spring house. When both reservoir and outflow pipe were accessible, we found that temperatures agreed to within ±0.2°C. We also measured the flow rate of the spring with a bucket and a stopwatch, with a repeatability of about ±10%.

    A temperature anomaly ∆T was determined for each spring by subtracting the annual average temperature at the spring site. Annually averaged temperatures are rarely available for spring sites but are available for airports via the National Oceanic and Atmospheric Administration’s (NOAA’s) National Center for Environmental Information. We therefore used the annually averaged temperature for the nearest airport (typically ~10-20 km away), corrected to the elevation of the spring using the dry adiabatic lapse rate of 9.8°C/km.

    Data was used in the following paper:

    Menke, W., Lamoureux, J., Abbott, D., Hopper, E., Hutson, D. and Marrero, A., 2018. Crustal heating and lithospheric alteration and erosion associated with asthenospheric upwelling beneath southern New England (USA). Journal of Geophysical Research: Solid Earth, 123(10), pp.8995-9008.

  3. Monthly rainfall in the UK 2014-2024

    • statista.com
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly rainfall in the UK 2014-2024 [Dataset]. https://www.statista.com/statistics/584914/monthly-rainfall-in-uk/
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2014 - Dec 2024
    Area covered
    United Kingdom
    Description

    The wettest months in the United Kingdom tend to be at the start and end of the year. In the period of consideration, the greatest measurement of rainfall was nearly 217 millimeters, recorded in December 2015. The lowest level of rainfall was recorded in April 2021, at 20.6 millimeters. Rainy days The British Isles are known for their wet weather, and in 2024 there were approximately 164 rain days in the United Kingdom. A rainday is when more than one millimeter of rain falls within a day. Over the past 30 years, the greatest number of rain days was recorded in the year 2000. In that year, the average annual rainfall in the UK amounted to 1,242.1 millimeters. Climate change According to the Met Office, climate change in the United Kingdom has resulted in the weather getting warmer and wetter. In 2022, the annual average temperature in the country reached a new record high, surpassing 10 degrees Celsius for the first time. This represented an increase of nearly two degrees Celsius when compared to the annual average temperature recorded in 1910. In a recent survey conducted amongst UK residents, almost 80 percent of respondents had concerns about climate change.

  4. d

    Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United...

    • catalog.data.gov
    • data.usgs.gov
    • +6more
    Updated Nov 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: 30-Year Average Annual Minimum Temperature, 1971-2000 [Dataset]. https://catalog.data.gov/dataset/attributes-for-nhdplus-catchments-version-1-1-for-the-conterminous-united-states-30-y-1971
    Explore at:
    Dataset updated
    Nov 30, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This data set represents the 30-year (1971-2000) average annual minimum temperature in Celsius multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Minimum Temperature, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  5. d

    Data from: Attributes for NHDPlus Catchments (Version 1.1) for the...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Annual Daily Minimum Temperature, 2002 [Dataset]. https://catalog.data.gov/dataset/attributes-for-nhdplus-catchments-version-1-1-for-the-conterminous-united-states-average-a-70fdc
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This data set represents the average monthly minimum temperature in Celsius multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  6. Warmest summers in the United Kingdom (UK) 1884-2024

    • statista.com
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Warmest summers in the United Kingdom (UK) 1884-2024 [Dataset]. https://www.statista.com/statistics/1358734/top-warmest-summers-united-kingdom/
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    The United Kingdom's hottest summer ever recorded was in 2018, with an average temperature of 15.76 degrees Celsius. Meanwhile, 2023 saw the eighth hottest summer in the UK, with an average temperature of 15.35 degrees. In the last couple of decades, five of the top 10 warmest summers in the UK were recorded. New temperature records in 2022 In summer 2022, record-breaking temperatures of more than 40 degrees Celsius were recorded at several locations across the UK. Accordingly, 2022 was also the UK's warmest year on record, with the average annual temperature rising above 10 degrees Celsius for the first time. Since temperature recording began in 1884, the hottest years documented in the country have all occurred after 2003. England: the warmest country in the UK Amongst the countries that comprise the United Kingdom, England has generally seen the highest annual mean temperatures. In 2022, England’s average temperature also reached a new record high, at nearly 11 degrees Celsius. And while it’s not a typical sight in the United Kingdom, England also registered the most hours of sunshine on average, with Scotland being the gloomiest country out of the four.

  7. d

    Data from: Attributes for MRB_E2RF1 Catchments by Major River Basins in the...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Average Daily Minimum Temperature, 2002 [Dataset]. https://catalog.data.gov/dataset/attributes-for-mrb-e2rf1-catchments-by-major-river-basins-in-the-conterminous-united-state-26e85
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This tabular data set represents the average daily minimum temperature in Celsius multiplied by 100 for 2002, compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the Near-Real-Time High-Resolution Monthly Average Maximum/Minimum Temperature for the Conterminous United States for 2002 raster data set produced by the Spatial Climate Analysis Service at Oregon State University. The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  8. P

    Papua New Guinea PG: Droughts, Floods, Extreme Temperatures: Average...

    • ceicdata.com
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Papua New Guinea PG: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population [Dataset]. https://www.ceicdata.com/en/papua-new-guinea/land-use-protected-areas-and-national-wealth/pg-droughts-floods-extreme-temperatures-average-19902009--of-population
    Explore at:
    Dataset updated
    Sep 3, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009
    Area covered
    Papua New Guinea
    Description

    Papua New Guinea PG: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data was reported at 0.731 % in 2009. Papua New Guinea PG: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data is updated yearly, averaging 0.731 % from Dec 2009 (Median) to 2009, with 1 observations. Papua New Guinea PG: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Papua New Guinea – Table PG.World Bank: Land Use, Protected Areas and National Wealth. Droughts, floods and extreme temperatures is the annual average percentage of the population that is affected by natural disasters classified as either droughts, floods, or extreme temperature events. A drought is an extended period of time characterized by a deficiency in a region's water supply that is the result of constantly below average precipitation. A drought can lead to losses to agriculture, affect inland navigation and hydropower plants, and cause a lack of drinking water and famine. A flood is a significant rise of water level in a stream, lake, reservoir or coastal region. Extreme temperature events are either cold waves or heat waves. A cold wave can be both a prolonged period of excessively cold weather and the sudden invasion of very cold air over a large area. Along with frost it can cause damage to agriculture, infrastructure, and property. A heat wave is a prolonged period of excessively hot and sometimes also humid weather relative to normal climate patterns of a certain region. Population affected is the number of people injured, left homeless or requiring immediate assistance during a period of emergency resulting from a natural disaster; it can also include displaced or evacuated people. Average percentage of population affected is calculated by dividing the sum of total affected for the period stated by the sum of the annual population figures for the period stated.; ; EM-DAT: The OFDA/CRED International Disaster Database: www.emdat.be, Université Catholique de Louvain, Brussels (Belgium), World Bank.; ;

  9. d

    Data from: Attributes for NHDPlus Catchments (Version 1.1) for the...

    • datadiscoverystudio.org
    pdf, zip
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: Average Monthly Precipitation, 2002. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/63dd3cdd8a494d25859be014301eca6f/html
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jun 8, 2018
    Area covered
    Contiguous United States, United States
    Description

    description: This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.; abstract: This data set represents the average monthly precipitation in millimeters multiplied by 100 for 2002 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the Near-Real-Time Monthly High-Resolution Precipitation Climate Data Set for the Conterminous United States (2002) raster dataset produced by the Spatial Climate Analysis Service at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  10. Public opinion on extreme weather event frequency in the U.S. 2021, by...

    • statista.com
    Updated Oct 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Public opinion on extreme weather event frequency in the U.S. 2021, by region [Dataset]. https://www.statista.com/statistics/1270380/us-perception-of-extreme-weather-frequency/
    Explore at:
    Dataset updated
    Oct 23, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 13, 2021 - Sep 19, 2021
    Area covered
    United States
    Description

    Residents in New England are the most likely to agree that extreme weather events are happening more often across the United States when compared to the past. According to a 2021 survey, nearly 80 percent of residents in New England thought the frequency of extreme weather events in the country had increased. This compared to a U.S. average of 67 percent.

  11. d

    Data from: Attributes for MRB_E2RF1 Catchments by Major River Basins in the...

    • search.dataone.org
    • data.usgs.gov
    • +1more
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael E. Wieczorek; Andrew E. LaMotte (2016). Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000 [Dataset]. https://search.dataone.org/view/a582f3aa-d8c6-4640-8280-b9fd0fd25b62
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    USGS Science Data Catalog
    Authors
    Michael E. Wieczorek; Andrew E. LaMotte
    Time period covered
    Jan 1, 1971 - Jan 1, 2000
    Area covered
    Variables measured
    OID, RF1ID, COV_PERC, BASIN_AREA, NODATA_ARE, TMAX30_ARE, TMAX30_MEA
    Description

    This tabular data set represents the 30-year (1971-2000) catchment-average total annual precipitation in millimeters multiplied by 100 compiled for every MRB_E2RF1 catchment of selected Major River Basins (MRBs, Crawford and others, 2006). The source data were the United States Average Monthly or Annual Minimum Precipitation, 1971 - 2000 raster data set produced by the PRISM Group at Oregon State University.

    The MRB_E2RF1 catchments are based on a modified version of the Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011).

    Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  12. r

    Meteorological observations for Eversleigh Station, near Armidale, New South...

    • researchdata.edu.au
    Updated Jun 29, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Algernon H. Belfield (2018). Meteorological observations for Eversleigh Station, near Armidale, New South Wales, Australia 1877-1922 (transcribed) [Dataset]. https://researchdata.edu.au/meteorological-observations-eversleigh-1922-transcribed/1332394
    Explore at:
    Dataset updated
    Jun 29, 2018
    Dataset provided by
    The University of Newcastle, Australia
    Authors
    Algernon H. Belfield
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1877 - Jan 1, 1922
    Area covered
    Description

    The collection contains a series of recorded meteorological observations taken daily between 1877-1922 by pastoralist, astronomer and meteorologist Algernon Henry Belfield at Eversleigh Station in the New England region, 20 kilometres north west of Armidale. The physical collection comprises 42 Meteorological Observation Books, available as 28 PDF files containing scans of front cover, back cover and each page for each Meteorological Observation Book. This previously published collection has now been transcribed into spreadsheets to facilitate re-use as a scientific data set. The data has been transcribed from the PDF version of the observation books by volunteers who were crowdsourced. During this process additional observation pages were identified as missing from the original published collection. These have been scanned and are transcribed in this dataset. This dataset comprises 2 csv files. The original Meteorological Observation Books for years 1879, 1880 and 1881 are missing and therefore are not digitally available. Daily observations/readings include: attached thermometer, barometer, dry bulb, wet bulb, maximum temperature (Fahrenheit), minimum temperature (Fahrenheit), rain (measure), direction of wind, wind force 0-12, cloud coverage 0-10, visual daily weather observations including fine and clear, cloudy, fog, thunder, showery, dull, cloudless, squally. Monthly tallies were recorded including: total days of rain, total days of lightning, mean diurnal range, greatest diurnal range, greatest range, mean temperature, mean maximum, mean minimum, mean dry, mean wet, mean cloud, mean humidity, inches of rain, inches of rain (since beginning of the year), winds. The original Meteorological Observing Books were deposited in the University of New England Heritage Centre by Mr Richard E.H. Belfield, Algernon Belfield's grandson. The collection was digitised for Cultural Collections, University of Newcastle by William Oates, University Archivist at the University of New England Heritage Centre.

  13. Data from: Assessing Plant Phenological Character Displacement Across the...

    • search.dataone.org
    • portal.edirepository.org
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Park; Ian Breckheimer; Charles Davis (2023). Assessing Plant Phenological Character Displacement Across the Eastern United States Since 1895 [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-hfr%2F335%2F4
    Explore at:
    Dataset updated
    Dec 11, 2023
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Daniel Park; Ian Breckheimer; Charles Davis
    Time period covered
    Jan 1, 1895 - Jan 1, 2018
    Area covered
    Variables measured
    bud, day, date, year, fruit, genus, month, state, coreid, county, and 8 more
    Description

    Reproductive character displacement has long been hypothesized to be a key determinant of speciation and co-existence in flowering plants. A central tenet of this hypothesis is that reproductive traits of close relatives growing in sympatry diverge more than they do where close relatives do not grow together. However, this idea remains untested across taxa and at large spatial scales. Here, we use data collected from tens of thousands of herbarium specimens to examine evidence for character displacement in flowering time for 91 closely-related pairs of animal-pollinated angiosperm species in the eastern USA. We see no evidence for overall phenological divergence in sympatry across regions, clades, or life histories. Rather our results indicate widespread convergence of flowering times in sympatry for species pairs that generally tend to flower close in time. We also find that climate change could alter the nature of these convergent flowering events by shifting them further apart in a majority species pair comparisons. Specifically, congeneric species in New England and the Atlantic Coastal Plain are projected to flower 2–4 days further apart, on average, by the mid-21st century as warming temperatures drive species-specific phenological shifts within genera. This may have significant consequences for species interactions and gene flow, especially if current sympatric convergence in flowering times has resulted from facilitative interactions between species.

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
Organization logo

Monthly average temperature in the United States 2020-2024

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 2, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2020 - Dec 2024
Area covered
United States
Description

The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

Search
Clear search
Close search
Google apps
Main menu