Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
This statistic shows a ranking of the estimated worldwide average temperature in 2020, differentiated by country. The figure refers to the projected annual average temperature for the period 2020-2039 as modelled by the GISS-E2-R model in the RCP 4.5 scenario (Medium-low emission).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in April 2025, the average temperature across the North American country stood at 12.02 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
The table Global Temperatures is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://columbia.redivis.com/datasets/1e0a-f4931vvyg. It contains 3192 rows across 9 variables.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
Compilation of Earth Surface temperatures historical. Source: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
Data compiled by the Berkeley Earth project, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
**Other files include: **
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
The raw data comes from the Berkeley Earth data page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The average mean temperature in the Nordic countries has seen an upward trend in the past four decades. In 2024, the average mean temperature in Denmark reached 9.73 degrees Celsius. All Nordic countries recorded the highest average temperatures in the displayed in 2024, except for Iceland. The lowest annual average mean surface temperature was recorded in Iceland 1918.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
http://www.worldclim.org/currenthttp://www.worldclim.org/current
(From http://www.worldclim.org/methods) - For a complete description, see:
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
The data layers were generated through interpolation of average monthly climate data from weather stations on a 30 arc-second resolution grid (often referred to as 1 km2 resolution). Variables included are monthly total precipitation, and monthly mean, minimum and maximum temperature, and 19 derived bioclimatic variables.
The WorldClim interpolated climate layers were made using: * Major climate databases compiled by the Global Historical Climatology Network (GHCN), the FAO, the WMO, the International Center for Tropical Agriculture (CIAT), R-HYdronet, and a number of additional minor databases for Australia, New Zealand, the Nordic European Countries, Ecuador, Peru, Bolivia, among others. * The SRTM elevation database (aggregeated to 30 arc-seconds, 1 km) * The ANUSPLIN software. ANUSPLIN is a program for interpolating noisy multi-variate data using thin plate smoothing splines. We used latitude, longitude, and elevation as independent variables.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data found in this dataset was collected from the Climate Data Online (CDO) of the National Centers For Environmental Information (NCEI). It contains daily country average precipitation and air temperature data (in metric units). The original dataset collected from the CDO's site consisted of around 4.9 million individual observations from 1306 distinct weather stations throughout the three countries. Missing data points were imputed with the daily mean and averaged across all weather stations within the country.
Additional notes on the original dataset for consideration: - Not every weather station reported every day (records/samples or rows of data) - Not every weather station reported on every observation (precipitation, snow depth, temperature average, temperature) - Percentage of missing data should be considered
Country | Weather stations | Records | Observations |
---|---|---|---|
Finland | 261 | 450,377 | 966,641 |
Norway | 328 | 545,560 | 1,293,193 |
Sweden | 717 | 1,160,751 | 2,608,227 |
Total | 1306 | 2,156,688 | 4,868,061 |
Percentage of missing values in the original datasets: | Country | Precipitation | Snow depth | TAVG | TMAX | TMIN | | --- | --- | --- | --- | --- | --- | | Finland | 24% | 96% | 89% | 38% | 38% | | Norway | 12% | 30% | 94% | 63% | 64% | | Sweden | 5% | 43% | 99% | 65% | 65% |
The annual mean temperature in England has typically been the highest of the United Kingdom's countries. In 2024, it stood at ***** degrees Celsius, while the average temperature in Scotland was **** degrees Celsius.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.
Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.
Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.
We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
Other files include:
The raw data comes from the Berkeley Earth data page.
Copenhagen recorded the highest average temperature among Nordic capital cities in 2023, with **** degrees Celsius. The Danish capital typically recorded the highest average annual temperature among Nordic capital cities over the past 100 years. The highest annual temperature recorded in Copenhagen was **** degrees Celsius in both 2014 and 2020.
This dataset contains the World Average Degree Days Database for the period 1964-2013. Follow datasource.kapsarc.org for timely data to advance energy economics research.*
Summary_64-13_freq=1D Average Degree Days of various indices for respective countries for the period 1964-2013, converted to a 1 day frequency
Summary_64-13_freq=6hrs Average Degree Days of various indices for respective countries for the period 1964-2013, calculated at 6 hrs frequency
T2m.hdd.18C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=18°C and frequency of 6 hrs
T2m.cdd.18C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=18°C and frequency of 6 hrs
t2m.hdd.15.6C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=15.6°C and frequency of 6 hrs
t2m.hdd.18.3C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=18.3°C and frequency of 6 hrs
t2m.hdd.21.1C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=21.1°C and frequency of 6 hrs
t2m.cdd.15.6C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=15.6°C and frequency of 6 hrs
t2m.cdd.18.3C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=18.3°C and frequency of 6 hrs
t2m.cdd.21.1C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=21.1°C and frequency of 6 hrs
t2m.hdd.60F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=60°F and frequency of 6 hrs
t2m.hdd.65F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=65°F and frequency of 6 hrs
t2m.hdd.70F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=70°F and frequency of 6 hrs
t2m.cdd.60F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=60°F and frequency of 6 hrs
t2m.cdd.65F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=65°F and frequency of 6 hrs
t2m.cdd.70F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=70°F and frequency of 6 hrs
HI.hdd.57.56F Calculation of Heating Degree Days using the Heat Index at Tref=57.56°F and frequency of 6 hrs
HI.hdd.63.08F Calculation of Heating Degree Days using the Heat Index at Tref=63.08°F and frequency of 6 hrs
HI.hdd.68.58F Calculation of Heating Degree Days using the Heat Index at Tref=68.58°F and frequency of 6 hrs
HI.cdd.57.56F Calculation of Cooling Degree Days using the Heat Index at Tref=57.56°F and frequency of 6 hrs
HI.cdd.63.08F Calculation of Cooling Degree Days using the Heat Index at Tref=63.08°F and frequency of 6 hrs
HI.cdd.68.58F Calculation of Cooling Degree Days using the Heat Index at Tref=68.58°F and frequency of 6 hrs
HUM.hdd.13.98C Calculation of Heating Degree Days using the Humidex at Tref=13.98°C and frequency of 6 hrs
HUM.hdd.17.4C Calculation of Heating Degree Days using the Humidex at Tref=17.40°C and frequency of 6 hrs
HUM.hdd.21.09C Calculation of Heating Degree Days using the Humidex at Tref=21.09°C and frequency of 6 hrs
HUM.cdd.13.98C Calculation of Cooling Degree Days using the Humidex at Tref=13.98°C and frequency of 6 hrs
HUM.cdd.17.4C Calculation of Cooling Degree Days using the Humidex at Tref=17.40°C and frequency of 6 hrs
HUM.cdd.21.09C Calculation of Cooling Degree Days using the Humidex at Tref=21.09°C and frequency of 6 hrs
ESI.hdd.12.6C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=12.6°C and frequency of 6 hrs
ESI.hdd.14.9C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=14.9°C and frequency of 6 hrs
ESI.hdd.17.2C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=17.2°C and frequency of 6 hrs
ESI.cdd.12.6C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=12.6°C and frequency of 6 hrs
ESI.cdd.14.9C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=14.9°C and frequency of 6 hrs
ESI.cdd.17.2C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=17.2°C and frequency of 6 hrs
Note:
Divide Degree Days by 4 to convert from 6 hrs to daily frequency
The table Global Temperatures by Major City is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://columbia.redivis.com/datasets/1e0a-f4931vvyg. It contains 239177 rows across 7 variables.
The Daily Air Temperature and Heat Index data available on CDC WONDER are county-level daily average air temperatures and heat index measures spanning the years 1979-2010. Temperature data are available in Fahrenheit or Celsius scales. Reported measures are the average temperature, number of observations, and range for the daily maximum and minimum air temperatures, and also percent coverage for the daily maximum heat index. Data are available by place (combined 48 contiguous states, region, division, state, county), time (year, month, day) and specified maximum and minimum air temperature, and heat index value. The data are derived from the North America Land Data Assimilation System (NLDAS) through NLDAS Phase 2, a collaboration project among several groups: the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Environmental Modeling Center (EMC), the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Princeton University, the National Weather Service (NWS) Office of Hydrological Development (OHD), the University of Washington, and the NCEP Climate Prediction Center (CPC). In a study funded by the NASA Applied Sciences Program/Public Health Program, scientists at NASA Marshall Space Flight Center/ Universities Space Research Association developed the analysis to produce the data available on CDC WONDER.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.