Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
Yearly Average Surface Temperature (ºC)
Compilation of Earth Surface temperatures historical. Source: https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
Data compiled by the Berkeley Earth project, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
**Other files include: **
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
%3C!-- --%3E
The raw data comes from the Berkeley Earth data page.
The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
The table Global Temperatures by Country is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://redivis.com/datasets/1e0a-f4931vvyg. It contains 577462 rows across 4 variables.
This statistic shows a ranking of the estimated worldwide average temperature in 2020, differentiated by country. The figure refers to the projected annual average temperature for the period 2020-2039 as modelled by the GISS-E2-R model in the RCP 4.5 scenario (Medium-low emission).The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
The table Global Temperatures by City is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://redivis.com/datasets/1e0a-f4931vvyg. It contains 8599212 rows across 7 variables.
The annual mean temperature in England has typically been the highest of the United Kingdom's countries. In 2024, it stood at 10.73 degrees Celsius, while the average temperature in Scotland was 8.17 degrees Celsius.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The mean annual temperature in North America stood at -4.5 degrees Celsius in 1995. It is expected that, 30 years later in 2025, the average temperature will increase by 1.6 degrees Celsius due to the effects of global warming, under a scenario where global temperatures increase by 1.5 degree Celsius.
The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation. For instance, in January 2025, the average temperature across the North American country stood at -1.54 degrees Celsius. Rising temperatures Globally, 2015, 2016, 2019 and 2021 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.
Temperatures have risen in the last 100 years around the world. In the 1910s, global average temperatures were some 0.38 degrees Celsius lower than the average temperatures between 1910 and 2000. In the most recent decade, the world experienced temperatures that were 1.21 degrees Celsius over the average.
http://www.worldclim.org/currenthttp://www.worldclim.org/current
(From http://www.worldclim.org/methods) - For a complete description, see:
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978.
The data layers were generated through interpolation of average monthly climate data from weather stations on a 30 arc-second resolution grid (often referred to as 1 km2 resolution). Variables included are monthly total precipitation, and monthly mean, minimum and maximum temperature, and 19 derived bioclimatic variables.
The WorldClim interpolated climate layers were made using: * Major climate databases compiled by the Global Historical Climatology Network (GHCN), the FAO, the WMO, the International Center for Tropical Agriculture (CIAT), R-HYdronet, and a number of additional minor databases for Australia, New Zealand, the Nordic European Countries, Ecuador, Peru, Bolivia, among others. * The SRTM elevation database (aggregeated to 30 arc-seconds, 1 km) * The ANUSPLIN software. ANUSPLIN is a program for interpolating noisy multi-variate data using thin plate smoothing splines. We used latitude, longitude, and elevation as independent variables.
The average mean temperature in the Nordic countries has seen an upward trend in the past four decades. In 2022, the average mean temperature in Denmark reached 9.5 degrees Celsius, a 28-percent increase in comparison to 1983. All Nordic countries recorded the highest average temperatures in the displayed period in 2018 and 2019.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf
This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.
AWIS Weather Services has delivered weather data from our small business in Auburn, Alabama to companies all over the world for over 25 years. We started with a few citrus growing clients in Florida and have expanded to worldwide offerings in both Historical Weather Data and Localized Human Weather Forecasts.
Our Extensive Historical Weather Database is full of 100% quality checked weather data from over 30,000 observation sites worldwide. The data is REAL WEATHER OBSERVATIONS and visually checked by humans each day.
This service is your access to that database as it gets updated.
You choose the variables you need. You choose the cities you need covered. We'll handle the data pulling, updating, and delivery. Most of the time, it's a simple .csv file saved to the Amazon S3 bucket system that only you have access to.
Variables for Live Weather Data Feed available for most locations are Max Temperature Min Temperature Total Precipitation Average Wind Speed Average Cloud Cover Average Temperature Max Relative Humidity Min Relative Humidity Evapotranspiration Potential Evapotranspiration Total Hours of Sunshine Solar Radiation Veg Wetting Max Soil Temperature Min Soil Temperature Average Soil Temperature Snow Fall Snow Depth
If a variable not listed is needed, contact us, we can likely generate the output from our many ingested inputs stored in our historical databases.
PRICING ESTIMATES: (The number of variables requested could change the price slightly) $1.50 per site, per month if you need less than 1000 sites. $1.25 per site, per month if you need 1001-5000 sites. $0.75 per site, per month if you need 5001-10000 sites. $0.25 per site, per month if you need over 10k sites.
Discounts available for long term deals. HISTORICAL DATA available upon request at a reduced rate. Reach out to us for more details and we can provide a targeted proposal within hours.
Copenhagen recorded the highest average temperature among Nordic capital cities in 2023, with 10.1 degrees Celsius. The Danish capital typically recorded the highest average annual temperature among Nordic capital cities over the past 100 years. The highest annual temperature recorded in Copenhagen was 10.7 degrees Celsius in both 2014 and 2020.
https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/
Temperature at 30 sites around the country from at least 1972 to 2022. We report annual and seasonal trends for the period 1972 to 2022 as well as rate of temperature change per decade. We provide data on average, minimum, and maximum for daily, annual, and seasonal temperatures. Trends are reported for annual and seasonal statistics. Temperature change can have a significant effect on agriculture, energy demand, ecosystems, and recreation.Climate change projections for New Zealand suggest the greatest warming will be in summer/autumn and the least in winter and spring (MfE, 2018). Variables: site: NIWA monitoring site statistic: Statistic: (mean of Average, Minimum or Maximum daily temperature) season: Spring, Summer, Autumn, Winter, or Annual p_value: P value slope, conf_low, conf_high: Rate of change per year and their lower and upper confidence intervals conf_level: confidence level (66% or 90% to match IPCC likelihood levels) intercept, r_squared, sigma: Linear model statistics trend_method: Whether the information in this row correspond to the Linear model slope or the Mann-Kendall test n: number of observations used to calculate the trend note: analysis note s, var_s, tau: Mann-Kendall trend statistics z: Z score alternative: the alternative hypothesis used for the Mann-Kendall test trend_likelihood: Likelihood categories adapted from IPCC. Indicates the likelihood that a trend is increasing, decreasing, or indeterminate period_start: Start of the period for which the trend was assessed period_end: End of the period for which the trend was assessed lat :Latitude lon: Longitude Ministry for the Environment. (2018). Climate Change Projections for New Zealand: Atmosphere Projections Based on Simulations from the IPCC Fifth Assessment, 2nd Edition (Publication No. ME 1385). https://www.mfe.govt.nz/publications/climate-change/climate-change-projections-new-zealand
Attribution 1.0 (CC BY 1.0)https://creativecommons.org/licenses/by/1.0/
License information was derived automatically
Dataset del covid-19 obtenido mediante técnicas de web Scrapping
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.