The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in the United States increased to 10.73 celsius in 2024 from 10.25 celsius in 2023. This dataset includes a chart with historical data for the United States Average Temperature.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in April 2025, the average temperature across the North American country stood at 12.02 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: Was the month cooler or warmer than usual? A: Colors show where and by how much the monthly average temperature differed from the month’s long-term average temperature from 1991-2020. Red areas were warmer than the 30-year average for the month, and blue areas were cooler. White and very light areas had temperatures close to the long-term average. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers or automated instruments collect the highest and lowest temperature of the day at each station over the entire month, and submit them to the National Centers for Environmental Information (NCEI). After scientists check the quality of the data to omit any systematic errors, they calculate each station’s monthly average of daily mean temperatures, then plot it on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolates (or estimates) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). To calculate the difference-from-average temperatures shown on these maps—also called temperature anomalies—NCEI scientists take the average temperature in each 5x5 km grid box for a single month and year, and subtract its 1991-2020 average for the same month. If the result is a positive number, the region was warmer than average. A negative result means the region was cooler than usual. Q: What do the colors mean? A: Shades of blue show places where average monthly temperatures were below their long-term average for the month. Areas shown in shades of pink to red had average temperatures that were warmer than usual. The darker the shade of red or blue, the larger the difference from the long-term average temperature. White and very light areas show where average monthly temperature was the same as or very close to the long-term average. Q: Why do these data matter? A: Comparing an area’s recent temperature to its long-term average can tell how warm or how cool the area is compared to usual. Temperature anomalies also give us a frame of reference to better compare locations. For example, two areas might have each had recent temperatures near 70°F, but 70°F could be above average for one location while below average for another. Knowing an area is much warmer or much cooler than usual can encourage people to pay close attention to on-the-ground conditions that affect daily life and decisions. People check maps like this to judge crop progress, estimate energy use, consider snow and lake ice melt; and to understand impacts on wildfire regimes. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Q: Data Format Description A: NetCDF (Version: 4) Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used these specific data sources: NClimGrid Average Temperature NClimGrid Temperature Normals References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions NCEI Monthly National Analysis Cl
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in China increased to 8.52 celsius in 2024 from 8.41 celsius in 2023. This dataset includes a chart with historical data for China Average Temperature.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.
Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
This dataset contains a 30-year rolling average of annual average minimum and maximum temperatures from the four models and two greenhouse gas (RCP) scenarios included in the four model ensemble for the years 1950-2099.The year identified is the mid-point of the 30-year average. eg. The year 2050 includes the values from 2036 to 2065. The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble. From the ten model ensemble, four models, forming a four model ensemble, were identified to provide coverage of the range of potential climate outcomes in California. The models in the four model ensemble and their general climate projection for California are: HadGEM2-ES (warm/dry),CanESM2 (average), CNRM-CM5 (cooler/wetter), and MIROC5 the model least like the others to improve coverage of the range of outcomes. These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff. Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved from https://cal-adapt.org/ Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.
In 2024, the average annual temperature in the United States was ***** degrees Celsius, the warmest year recorded in the period in consideration. In 1895, this figure stood at ***** degrees Celsius. Recent years have been some of the warmest years recorded in the country.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities
This dataset provide:
Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.
Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.
Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.
Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.
Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.
Number of missing daily Tmax, Tmin, and precipitation values are included for each city.
Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.
The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).
Resources:
See included README file for more information.
Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1
Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538
ACIS database for historical observations: http://scacis.rcc-acis.org/
GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
Station information for each city can be accessed at: http://threadex.rcc-acis.org/
2024 August updated -
Annual calculations for 2022 and 2023 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.
Note that future updates may be infrequent.
2022 January updated -
Annual calculations for 2021 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.
2021 January updated -
Annual calculations for 2020 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.
2020 January updated -
Annual calculations for 2019 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.
Thresholds for all 210 cities were combined into one single file – Thresholds.csv.
2019 June updated -
Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.
README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in Iran decreased to 19.18 celsius in 2024 from 19.61 celsius in 2023. This dataset includes a chart with historical data for Iran Average Temperature.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in Japan increased to 13.11 celsius in 2024 from 13 celsius in 2023. This dataset includes a chart with historical data for Japan Average Temperature.
The mean annual temperature in North America stood at -4.5 degrees Celsius in 1995. It is expected that, 30 years later in 2025, the average temperature will increase by 1.6 degrees Celsius due to the effects of global warming, under a scenario where global temperatures increase by 1.5 degree Celsius.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains a 30-year average of annual average minimum and maximum temperatures across all ten models and two greenhouse gas (RCP) scenarios in the ten model ensemble. Three named time periods are included “Historic Baseline (1961-1990)”, “Mid-Century (2035-2064)”, and “End of Century (2070-2099).”
The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble.
These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff.
Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved from https://cal-adapt.org/
Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.
This dataset contains 30-year rolling averages of annual average minimum and maximum temperatures across all four models and two greenhouse gas (RCP) scenarios in the four model ensemble. The year identified for a 30 year rolling average is the mid-point of the 30-year average. eg. The year 2050 includes the values from 2036 to 2065. The downscaling and selection of models for inclusion in ten and four model ensembles is described in Pierce et al. 2018, but summarized here. Thirty two global climate models (GCMs) were identified to meet the modeling requirements. From those, ten that closely simulate California’s climate were selected for additional analysis (Table 1, Pierce et al. 2018) and to form a ten model ensemble. From the ten model ensemble, four models, forming a four model ensemble, were identified to provide coverage of the range of potential climate outcomes in California. The models in the four model ensemble and their general climate projection for California are: HadGEM2-ES (warm/dry),CanESM2 (average),CNRM-CM5 (cooler/wetter),and MIROC5 the model least like the others to improve coverage of the range of outcomes. These data were downloaded from Cal-Adapt and prepared for use within CA Nature by California Natural Resource Agency and ESRI staff. Cal-Adapt. (2018). LOCA Derived Data [GeoTIFF]. Data derived from LOCA Downscaled CMIP5 Climate Projections. Cal-Adapt website developed by University of California at Berkeley’s Geospatial Innovation Facility under contract with the California Energy Commission. Retrieved 0 from https://res1cal-adaptd-o-torg.vcapture.xyz/ Pierce, D. W., J. F. Kalansky, and D. R. Cayan, (Scripps Institution of Oceanography). 2018. Climate, Drought, and Sea Level Rise Scenarios for the Fourth California Climate Assessment. California’s Fourth Climate Change Assessment, California Energy Commission. Publication Number: CNRA-CEC-2018-006.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Who among us doesn't talk a little about the weather now and then? Will it rain tomorrow and get so cold to shake your chin or will it make that cracking sun? Does global warming exist?
With this dataset, you can apply machine learning tools to predict the average temperature of Detroit city based on historical data collected over 5 years.
The given data set was produced from the Historical Hourly Weather Data [https://www.kaggle.com/selfishgene/historical-hourly-weather-data], which consists of about 5 years of hourly measurements of various weather attributes (eg. temperature, humidity, air pressure) from 30 US and Canadian cities.
From this rich database, a cutout was made by selecting only the city of Detroit (USA), highlighting only the temperature, converting it to Celsius degrees and keeping only one value for each date (corresponding to the average daytime temperature - from 9am to 5pm).
In addition, temperature values were artificially and gradually increased by a few Celsius degrees over the available period. This will simulate a small global warming (or is it local?)...
In summary, the available dataset contains the average daily temperatures (collected during the day), artificially increased by a certain value, for the city of Detroit from October 2012 to November 2017.
The purpose of this dataset is to apply forecasting models in order to predict the value of the artificially warmed average daily temperature of Detroit.
See graph in the following image: black dots refer to the actual data and the blue line represents the predictive model (including a confidence area).
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3089313%2Faf9614514242dfb6164a08c013bf6e35%2Fplot-ts2.png?generation=1567827710930876&alt=media" alt="">
This dataset wouldn't be possible without the previous work in Historical Hourly Weather Data.
What are the best forecasting models to address this particular problem? TBATS, ARIMA, Prophet? You tell me!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to the standard Lambert Azimuthal Equal Area projection used for the North American Environmental Atlas. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download
This raster contains absolute change in annual average temperature values. Data are ensemble mean values across 20 global climate models from the CMIP5 experiment [Taylor et al., 2012], downscaled to a 4km grid. For more information on the downscaling method and to access the raw data used to create this dataset, please see Abatzoglou and Brown, [2012] and the Northwest Climate Science Center.We used the MACAv2-metdata monthly minimum and maximum temperature datasets. Average temperature was calculated as the arithmetic mean of minimum and maximum temperature datasets. Average temperature was averaged over water years (1 Oct to 30 Sept). Absolute change values are the difference between the mean historical (1975-2005) and future (2071-2090, RCP8.5) annual average temperatures. Units are degrees Celsius.More information on the project associated with this dataset is available from the U.S. Forest Service Rocky Mountain Research Station, including detailed metadata; these raster data are available for download here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in Sweden increased to 4.19 celsius in 2024 from 3.38 celsius in 2023. This dataset includes a chart with historical data for Sweden Average Temperature.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.