Europe's average temperature has increased significantly when compared with the pre-industrial period, with the average temperature in 2014 2.22 degrees Celsius higher than average pre-industrial temperatures, the most of any year between 1850 and 2019.
Due to climate change the Slovenian capital Ljubljana is expected to see its mean annual temperature increase by 3.5 degrees Celsius by 2050. This is the largest increase throughout the European Union, and will be comparable to current temperatures recorded in Virginia Beach, USA. Northern European cities such as London, Paris and Berlin will see temperatures rise to levels currently experienced in the Australian cities of Canberra and Melbourne.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset contains temperature exposure statistics for Europe (e.g. percentiles) derived from the daily 2 metre mean, minimum and maximum air temperature for the entire year, winter (DJF: December-January-February) and summer (JJA: June-July-August). These statistics were derived within the C3S European Health service and are available for different future time periods and using different climate change scenarios. Temperature percentiles are typically used in epidemiology and public health when defining health risk estimates and when looking at current and future health impacts, and they allow to identify a common threshold and comparison between different cities/areas. The temperature statistics are calculated, either for the season winter and summer or for the whole year, based on a bias-adjusted EURO-CORDEX dataset. The statistics are averaged for 30 years as a smoothed average from 1971 to 2100. This results in a timeseries covering the period from 1986 to 2085. Finally, the timeseries are averaged for the model ensemble and the standard deviation to this ensemble mean is provided.
This statistic presents the perceived changes in annual global temperatures in the last 18 years, in selected European Countries in 2018. According to data published by Ipsos, the average guess among respondents in these countries was between 7 to 13 years, compared to the actual figure of 17.
The E-OBS dataset (https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php) consists of gridded fields created from station series throughout Europe. The dataset contains preliminary daily updates of the E-OBS dataset for daily mean temperature. Only the last 60 days are saved in this dataset, so the latest month is completely available at all times after the monthly update. This dataset is currently unavailable on our platform. We are actively working to resolve this issue, but we do not have a definitive timeline for when the download functionality for this dataset will be restored. In the meantime, you can access the dataset directly from the original source using the following alternative link: https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php.
Based on current monthly figures, on average, German climate has gotten a bit warmer. The average temperature for January 2025 was recorded at around 2 degrees Celsius, compared to 1.5 degrees a year before. In the broader context of climate change, average monthly temperatures are indicative of where the national climate is headed and whether attempts to control global warming are successful. Summer and winter Average summer temperature in Germany fluctuated in recent years, generally between 18 to 19 degrees Celsius. The season remains generally warm, and while there may not be as many hot and sunny days as in other parts of Europe, heat waves have occurred. In fact, 2023 saw 11.5 days with a temperature of at least 30 degrees, though this was a decrease compared to the year before. Meanwhile, average winter temperatures also fluctuated, but were higher in recent years, rising over four degrees on average in 2024. Figures remained in the above zero range since 2011. Numbers therefore suggest that German winters are becoming warmer, even if individual regions experiencing colder sub-zero snaps or even more snowfall may disagree. Rain, rain, go away Average monthly precipitation varied depending on the season, though sometimes figures from different times of the year were comparable. In 2024, the average monthly precipitation was highest in May and September, although rainfalls might increase in October and November with the beginning of the cold season. In the past, torrential rains have led to catastrophic flooding in Germany, with one of the most devastating being the flood of July 2021. Germany is not immune to the weather changing between two extremes, e.g. very warm spring months mostly without rain, when rain might be wished for, and then increased precipitation in other months where dry weather might be better, for example during planting and harvest seasons. Climate change remains on the agenda in all its far-reaching ways.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Annual mean temperature data for the period 1950 to 2009 for Europe. Data is gridded at a cell size of 0.25 degrees. E-OBS daily data downloaded from http://eca.knmi.nl/download/ensembles/download.php#datafiles in NetCDF format. Data converted to Arc GRID and annual averages calculated for each year, using map algebra. Please see http://eca.knmi.nl/download/ensembles/download.php#datafiles for terms and conditions of use. Other. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2011-01-14 and migrated to Edinburgh DataShare on 2017-02-21.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset provides a series of climate indices derived from reanalysis and model simulations data hosted on the Copernicus Climate Data Store (CDS). These indicators describe how climate variability and change of essential climate variables can impact sectors such as health, agriculture, forestry, energy, tourism, or water and coastal management. Those indices are relevant for adaptation planning at the European and national level and their development was driven by the European Environment Agency (EEA) to address informational needs of climate change adaptation national initiatives across the EU and partner countries as expressed by user requirements and stakeholder consultation. The indices cover the hazard categories introduced by the IPCC and the European Topic Centre on Climate Change Impacts, Vulnerability and Adaptation (ETC-CCA). They are also made available interactively through CDS Toolbox public visualisation apps on the European Climate Data Explorer hosted on EEA’s Climate-adapt site. The indices are either downloaded from the CDS where available, or calculated through a specific CDS Toolbox workflow. In this way both the calculations and the resulting data are fully traceable. As they come from different datasets the underlying climate data differ in their technical specification (type and number of climate and impact models involved, bias-corrected or not, periods covered etc.). An effort was made in the dataset selection to limit the heterogeneity of the underlying dataset as ideally the indices should come from the same dataset with identical specifications. The indices related to temperature, precipitation and wind (20 out of 30) were calculated from atmospheric variables in the same datasets: 'Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections', and 'ERA5 hourly data on single levels from 1940 to present'. The other indices are directly available from CDS datasets generated by specific theme projects. More information about this dataset can be found in the documentation. The underlying datasets hosted on the CDS are:
ERA5 hourly data on single levels from 1940 to present - used to calculate most of the temperature, precipitation and wind speed indicators as it provides the historical and observation based baseline used to monitor the indicators. Climate and energy indicators for Europe from 2005 to 2100 derived from climate projections - used to calculate most of the temperature, precipitation and wind speed indicators as it provides bias-corrected sub-daily data. It is used for all the indicators except those specified in the following datasets below. Fire danger indicators for Europe from 1970 to 2098 derived from climate projections - provides the high fire danger days and fire weather indicators. Hydrology-related climate impact indicators from 1970 to 2100 derived from bias adjusted European climate projections - provides the river flood, river discharge, aridity actual, and mean soil moisture indicators. Mountain tourism meteorological and snow indicators for Europe from 1950 to 2100 derived from reanalysis and climate projections - provides the snowfall amount index. Water level change indicators for the European coast from 1977 to 2100 derived from climate projections - provides the relative sea level rise and extreme sea level indicators.
This dataset was produced on behalf of the Copernicus Climate Change Service.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf
This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.
The map shows the monthly average minimum temperature in °C for November, December, January and February. This WorldClim data was generated through interpolation of average monthly climate data from weather stations on a 30 arc-second resolution grid (= about 1km² resolution).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Gridded ERA5 is the fifth generation ECMWF reanalysis for the global climate and weather for the past 4 to 7 decades. This parameter is the 2m temperature monthly average
The map shows the average annual temperature (in °C) for the 30-year period 2021-2050 under the “Climate Protection” scenario (RCP2.6). Here, the air temperature is considered at a height of 2 m above the ground. The climate models are powered by the “climate protection” scenario (RCP2.6). This is a scenario of the IPCC, which means significant efforts in climate protection and low emissions. The results of all climate models are equally likely. Therefore, in addition to the mean that shows a tendency, the upper (maximum) and lower (minimum) edges of the result bandwidth can be retrieved via the MapTip.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
This dataset provides precipitation and near surface air temperature for Europe as Essential Climate Variables (ECVs) and as a set of Climate Impact Indicators (CIIs) based on the ECVs. ECV datasets provide the empirical evidence needed to understand the current climate and predict future changes. CIIs contain condensed climate information which facilitate relatively quick and efficient subsequent analysis. Therefore, CIIs make climate information accessible to application focussed users within a sector. The ECVs and CIIs provided here were derived within the water management sectoral information service to address questions specific to the water sector. However, the products are provided in a generic form and are relevant for a range of sectors, for example agriculture and energy. The data represent the current state-of-the-art in Europe for regional climate modelling and indicator production. Data from eight model simulations included in the Coordinated Regional Climate Downscaling Experiment (CORDEX) were used to calculate a total of two ECVs and five CIIs at a spatial resolution of 0.11° x 0.11° and 5km x 5km. The ECV data meet the technical specification set by the Global Climate Observing System (GCOS), as such they are provided on a daily time step. They are bias adjusted using the EFAS gridded observations as a reference dataset. Note these are model output data, not observation data as is the general case for ECVs. The CIIs are provided as mean values over a 30-year time period. For the reference period (1971-2000) data is provided as absolute values, for the future periods the data is provided as absolute values and as the relative or absolute change from the reference period. The future periods cover 3 fixed time periods (2011-2040, 2041-2070 and 2071-2100) and 3 "degree scenario" periods defined by when global warming exceeds a given threshold (1.5 °C, 2.0 °C or 3.0 °C). The global warming is calculated from the global climate model (GCM) used, therefore the actual time period of the degree scenarios will be different for each GCM. This dataset is produced and quality assured by the Swedish Meteorological and Hydrological Institute on behalf of the Copernicus Climate Change Service.
The map shows the monthly average minimum temperature in °C for January. This WorldClim data was generated through interpolation of average monthly climate data from weather stations on a 30 arc-second resolution grid (= about 1km² resolution)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains daily elements measured at our synoptic station in Gurteen, Co Tipperary. The file is updated monthly. Values for each day include: Precipitation Amount (mm); Maximum Air Temperature (C); Minimum Air Temperature (C); 09utc Grass Minimum Temperature (C); Mean 10cm soil temperature (C); Mean CBL Pressure (hpa); Mean Wind Speed (kt); Highest ten minute mean wind speed (kt); Wind Direction at max 10 min mean (deg); Highest Gust (kt); Potential Evapotranspiration (mm); Evaporation (mm); Soil Moisture Deficits (mm); Global Radiation (J/cm sq.)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the data displayed in the figures or the article "High-resolution projections of ambient heat for major European cities using different heat metrics".
The different files contain:
In November 2023, the surface air temperature anomaly in Europe was 0.48°C, relative to the 1991-2020 average for that month. This was 1.26°C colder than November 2015, which was Europe's hottest November on record, with a temperature anomaly surpassing 1.74°C.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/licence-to-use-copernicus-products/licence-to-use-copernicus-products_b4b9451f54cffa16ecef5c912c9cebd6979925a956e3fa677976e0cf198c2c18.pdf
The Nordic Gridded Climate Dataset (NGCD) is a high resolution, observational, gridded dataset of daily minimum, maximum and mean temperatures and daily precipitation totals, covering Finland, Sweden and Norway. The time period covered begins in January 1961 and continues to the present. The dataset is regularly updated every 6 months, in March and in September. In addition, there are daily, provisional updates. Spatial interpolation methods are applied to observational datasets to create gridded datasets. In general, there are three types of such methods: deterministic (type 1), stochastic (type 2) and pure mathematical (type 3). NGCD applies both a deterministic kriging (type 1) interpolation approach and a stochastic Bayesian (type 2) interpolation approach to the same in-situ observational dataset collected by weather stations. For more details on the algorithms, users are advised to read the product user guide. The input data is provided by the National Meteorological and Hydrological Services of Finland, Norway and Sweden. The time-series used for Finland and Sweden are the non-blended time-series from the station network of the European Climate Assessment & Dataset (ECA&D) project. For Norway, time-series are extracted from the climate database of the Norwegian Meteorological Institute.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Overview:
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land variables over several decades at an enhanced resolution compared to ERA5. ERA5-Land has been produced by replaying the land component of the ECMWF ERA5 climate reanalysis. Reanalysis combines model data with observations from across the world into a globally complete and consistent dataset using the laws of physics. Reanalysis produces data that goes several decades back in time, providing an accurate description of the climate of the past.
Air temperature (2 m):
Temperature of air at 2m above the surface of land, sea or in-land waters. 2m temperature is calculated by interpolating between the lowest model level and the Earth's surface, taking account of the atmospheric conditions.
Processing steps:
The original hourly ERA5-Land data has been spatially enhanced from 0.1 degree to 30 arc seconds (approx. 1000 m) spatial resolution by image fusion with CHELSA data (V1.2) (https://chelsa-climate.org/). For each day we used the corresponding monthly long-term average of CHELSA. The aim was to use the fine spatial detail of CHELSA and at the same time preserve the general regional pattern and fine temporal detail of ERA5-Land. The steps included aggregation and enhancement, specifically:
1. spatially aggregate CHELSA to the resolution of ERA5-Land
2. calculate difference of ERA5-Land - aggregated CHELSA
3. interpolate differences with a Gaussian filter to 30 arc seconds
4. add the interpolated differences to CHELSA
The spatially enhanced daily ERA5-Land data has been aggregated on a weekly basis starting from Saturday for the time period 2016 - 2020.
Data available is the weekly average of daily averages, the weekly minimum of daily minima and the weekly maximum of daily maxima of air temperature (2 m).
File naming:
Average of daily average: era5_land_t2m_avg_weekly_YYYY_MM_DD.tif
Max of daily max: era5_land_t2m_max_weekly_YYYY_MM_DD.tif
Min of daily min: era5_land_t2m_min_weekly_YYYY_MM_DD.tif
The date in the file name determines the start day of the week (Saturday).
Pixel value:
°C * 10
Example: Value 44 = 4.4 °C
The QML or SLD style files can be used for visualization of the temperature layers.
Coordinate reference system:
ETRS89 / LAEA Europe (EPSG:3035) (EPSG:3035)
Spatial extent:
north: 82:00:30N
south: 18N
west: 32:00:30W
east: 70E
Spatial resolution:
1km
Temporal resolution:
weekly
Time period:
01/01/2016 - 12/31/2020
Format: GeoTIFF
Representation type: Grid
Software used:
GDAL 3.2.2 and GRASS GIS 8.0.0 (r.resamp.stats -w; r.relief)
Lineage:
Dataset has been processed from original Copernicus Climate Data Store (ERA5-Land) data sources. As auxiliary data CHELSA climate data has been used.
Original ERA5-Land dataset license:
https://cds.climate.copernicus.eu/api/v2/terms/static/licence-to-use-copernicus-products.pdf
CHELSA climatologies (V1.2):
Data used: Karger D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E, Linder, H.P., Kessler, M. (2018): Data from: Climatologies at high resolution for the earth's land surface areas. Dryad digital repository. http://dx.doi.org/doi:10.5061/dryad.kd1d4
Original peer-reviewed publication: Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, P., Kessler, M. (2017): Climatologies at high resolution for the Earth land surface areas. Scientific Data. 4 170122. https://doi.org/10.1038/sdata.2017.122
Other resources:
https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/601ea08c-0768-4af3-a8fa-7da25fb9125b
Processed by:
mundialis GmbH & Co. KG, Germany (https://www.mundialis.de/)
Contact:
mundialis GmbH & Co. KG, info@mundialis.de
Europe's average temperature has increased significantly when compared with the pre-industrial period, with the average temperature in 2014 2.22 degrees Celsius higher than average pre-industrial temperatures, the most of any year between 1850 and 2019.