Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the average miles driven per person in the United States from 1980 to 2022. The x-axis represents the years, while the y-axis shows the average miles driven annually by one person. The data shows that the lowest average was 10,511 miles in 1980, and the highest was 14,906 miles in 2004. A notable drop occurred in 2020, with the average falling to 12,724 miles, likely reflecting reduced travel during the COVID-19 pandemic. Overall, the data highlights a long-term increase in driving over the decades, with fluctuations in recent years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in New Haven County, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for New Haven County decreased by $1,345 (1.63%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 5 years.
https://i.neilsberg.com/ch/new-haven-county-ct-median-household-income-trend.jpeg" alt="New Haven County, CT median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Haven County median household income. You can refer the same here
The UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_14_12_22" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
Google Chrome is blocking downloads of our UK HPI data files (Chrome 88 onwards). Please use another internet browser while we resolve this issue. We apologise for any inconvenience caused.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_14_12_22" class="govuk-link">Average price (CSV, 9.6MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_14_12_22" class="govuk-link">Average price by property type (CSV, 29MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_14_12_22" class="govuk-link">Sales (CSV, 4.9MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_14_12_22" class="govuk-link">Cash mortgage sales (CSV, 7MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_14_12_22" class="govuk-link">First time buyer and former owner occupier (CSV, 6.6MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_14_12_22" class="govuk-link">New build and existing resold property (CSV, 17.6MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_14_12_22" class="govuk-link">Index (CSV, 6.2MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_14_12_22" class="govuk-link">Index seasonally adjusted (CSV, 203KB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2022-10.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_14_12_22" class="govuk-link">Average price seasonally adjusted<
In 2024, global retail e-commerce sales reached an estimated ************ U.S. dollars. Projections indicate a ** percent growth in this figure over the coming years, with expectations to come close to ************** dollars by 2028. World players Among the key players on the world stage, the American marketplace giant Amazon holds the title of the largest e-commerce player globally, with a gross merchandise value of nearly *********** U.S. dollars in 2024. Amazon was also the most valuable retail brand globally, followed by mostly American competitors such as Walmart and the Home Depot. Leading e-tailing regions E-commerce is a dormant channel globally, but nowhere has it been as successful as in Asia. In 2024, the e-commerce revenue in that continent alone was measured at nearly ************ U.S. dollars, outperforming the Americas and Europe. That year, the up-and-coming e-commerce markets also centered around Asia. The Philippines and India stood out as the swiftest-growing e-commerce markets based on online sales, anticipating a growth rate surpassing ** percent.
http://marine.copernicus.eu/web/27-service-commitments-and-licence.phphttp://marine.copernicus.eu/web/27-service-commitments-and-licence.php
'''DEFINITION'''The OMI_CLIMATE_SST_BAL_trend product includes the cumulative/net trend in sea surface temperature anomalies for the Baltic Sea from 1993-2022. The cumulative trend is the rate of change (°C/year) scaled by the number of years (30 years). The SST Level 4 analysis products that provide the input to the trend calculations are taken from the reprocessed product SST_BAL_SST_L4_REP_OBSERVATIONS_010_016 with a recent update to include 2022. The product has a spatial resolution of 0.02 in latitude and longitude.The OMI time series runs from Jan 1, 1993 to December 31, 2022 and is constructed by calculating monthly averages from the daily level 4 SST analysis fields of the SST_BAL_SST_L4_REP_OBSERVATIONS_010_016 from 1993 to 2022. See the Copernicus Marine Service Ocean State Reports for more information on the OMI product (section 1.1 in Von Schuckmann et al., 2016; section 3 in Von Schuckmann et al., 2018). The times series of monthly anomalies have been used to calculate the trend in SST using Sen’s method with confidence intervals from the Mann-Kendall test (section 3 in Von Schuckmann et al., 2018).'''CONTEXT'''SST is an essential climate variable that is an important input for initialising numerical weather prediction models and fundamental for understanding air-sea interactions and monitoring climate change. The Baltic Sea is a region that requires special attention regarding the use of satellite SST records and the assessment of climatic variability (Høyer and She 2007; Høyer and Karagali 2016). The Baltic Sea is a semi-enclosed basin with natural variability and it is influenced by large-scale atmospheric processes and by the vicinity of land. In addition, the Baltic Sea is one of the largest brackish seas in the world. When analysing regional-scale climate variability, all these effects have to be considered, which requires dedicated regional and validated SST products. Satellite observations have previously been used to analyse the climatic SST signals in the North Sea and Baltic Sea (BACC II Author Team 2015; Lehmann et al. 2011). Recently, Høyer and Karagali (2016) demonstrated that the Baltic Sea had warmed 1-2oC from 1982 to 2012 considering all months of the year and 3-5oC when only July- September months were considered. This was corroborated in the Ocean State Reports (section 1.1 in Von Schuckmann et al., 2016; section 3 in Von Schuckmann et al., 2018). '''CMEMS KEY FINDINGS'''SST trends were calculated for the Baltic Sea area and the whole region including the North Sea, over the period January 1993 to December 2022. The average trend for the Baltic Sea domain (east of 9°E longitude) is 0.048°C/year, which represents an average warming of 1.44°C for the 1993-2022 period considered here. When the North Sea domain is included, the trend decreases to 0.029°C/year corresponding to an average warming of 0.87°C for the 1993-2022 period. Trends are highest for the Baltic Sea region and North Atlantic, especially offshore from Norway, compared to other regions. '''Figure caption'''Cumulative trends in sea surface temperature anomalies calculated from 1993 to 2022 for the Baltic Sea (OMI_CLIMATE_SST_BAL_trend). Trend calculations are based on the multi-year Baltic Sea L4 SST satellite product SST_BAL_SST_L4_REP_OBSERVATIONS_010_016.'''DOI (product):''' https://doi.org/10.48670/moi-00206
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Australia Average Weekly Job Advertisements: Trend: Newspaper & Internet data was reported at 242,138.000 Unit in Sep 2022. This records an increase from the previous number of 240,431.000 Unit for Aug 2022. Australia Average Weekly Job Advertisements: Trend: Newspaper & Internet data is updated monthly, averaging 145,545.000 Unit from Jul 1999 (Median) to Sep 2022, with 279 observations. The data reached an all-time high of 254,911.000 Unit in Mar 2008 and a record low of 59,102.000 Unit in Apr 2020. Australia Average Weekly Job Advertisements: Trend: Newspaper & Internet data remains active status in CEIC and is reported by Australia and New Zealand Banking Group Limited. The data is categorized under Global Database’s Australia – Table AU.G116: Average Weekly Job Advertisements (Discontinued).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in China increased to 120698 CNY/Year in 2023 from 114029 CNY/Year in 2022. This dataset provides - China Average Yearly Wages - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Harlan County, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Harlan County increased by $3,988 (6.62%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 5 years.
https://i.neilsberg.com/ch/harlan-county-ne-median-household-income-trend.jpeg" alt="Harlan County, NE median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Harlan County median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Yolo County, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Yolo County increased by $7,715 (10.02%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 5 years.
https://i.neilsberg.com/ch/yolo-county-ca-median-household-income-trend.jpeg" alt="Yolo County, CA median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Yolo County median household income. You can refer the same here
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities
This dataset provide:
Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.
Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.
Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.
Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.
Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.
Number of missing daily Tmax, Tmin, and precipitation values are included for each city.
Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.
The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).
Resources:
See included README file for more information.
Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1
Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538
ACIS database for historical observations: http://scacis.rcc-acis.org/
GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/
Station information for each city can be accessed at: http://threadex.rcc-acis.org/
2024 August updated -
Annual calculations for 2022 and 2023 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.
Note that future updates may be infrequent.
2022 January updated -
Annual calculations for 2021 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.
2021 January updated -
Annual calculations for 2020 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.
2020 January updated -
Annual calculations for 2019 were added.
Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.
Thresholds for all 210 cities were combined into one single file – Thresholds.csv.
2019 June updated -
Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.
README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Yorkville, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Yorkville increased by $2,985 (2.70%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 6 years and declined for 5 years.
https://i.neilsberg.com/ch/yorkville-il-median-household-income-trend.jpeg" alt="Yorkville, IL median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Yorkville median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual overall school rank from 2010 to 2022 for Normal Heights Elementary School
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Yellville, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Yellville decreased by $3,696 (9.78%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 5 years and declined for 6 years.
https://i.neilsberg.com/ch/yellville-ar-median-household-income-trend.jpeg" alt="Yellville, AR median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Yellville median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual reading and language arts proficiency from 2010 to 2022 for Normal Park Museum Magnet School vs. Tennessee and Hamilton County School District
The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the median household incomes over the past decade across various racial categories identified by the U.S. Census Bureau in Beaverton. It portrays the median household income of the head of household across racial categories (excluding ethnicity) as identified by the Census Bureau. It also showcases the annual income trends, between 2012 and 2022, providing insights into the economic shifts within diverse racial communities.The dataset can be utilized to gain insights into income disparities and variations across racial categories, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/beaverton-or-median-household-income-by-race-trends.jpeg" alt="Beaverton, OR median household income trends across races (2012-2022, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Beaverton median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset illustrates the median household income in Yountville, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.
Key observations:
From 2010 to 2021, the median household income for Yountville decreased by $18,141 (19.65%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.
Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 3 years and declined for 8 years.
https://i.neilsberg.com/ch/yountville-ca-median-household-income-trend.jpeg" alt="Yountville, CA median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.
Years for which data is available:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Yountville median household income. You can refer the same here
The Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the average miles driven per person in the United States from 1980 to 2022. The x-axis represents the years, while the y-axis shows the average miles driven annually by one person. The data shows that the lowest average was 10,511 miles in 1980, and the highest was 14,906 miles in 2004. A notable drop occurred in 2020, with the average falling to 12,724 miles, likely reflecting reduced travel during the COVID-19 pandemic. Overall, the data highlights a long-term increase in driving over the decades, with fluctuations in recent years.