The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
The annual mean temperature in the United Kingdom has fluctuated greatly since 1990. Temperatures during this period were at their highest in 2022, surpassing 10 degrees Celsius. In 2010, the mean annual temperature stood at 7.94 degrees, the lowest recorded during this time. Daily temperatures Average daily temperatures have remained stable since the turn of the century, rarely dropping below 10 degrees Celsius. In 2010, they dropped to a low of nine degrees Celsius. The peak average daily temperature was recorded in 2022 when it reached 11.2 degrees. This was an increase of one degree Celsius compared to the long-term mean, and the most positive deviation during the period of consideration. Highs and lows The maximum average temperature recorded across the UK since 2015 was in July 2018. This month saw a maximum temperature of 22.6 degrees Celsius. In comparison, the lowest monthly minimum temperature was in February of the same year, at just minus 0.6 degrees. This was an especially cold February, as the previous year the minimum temperature for this month was 2.6 degrees.
The average temperature across the United Kingdom presented a trend of continuous growth since 1961. During the first period, from 1961 to 1990, the country recorded an average temperature of 8.3 degrees Celsius. In the next period, from 1991 to 2020, the UK's average temperature increased by 0.8 degrees Celsius and increased further by 0.5 degrees Celsius between 2014 and 2023. In the latter year, figures remained at 10 degrees Celsius, 1.7 degrees warmer than the average recorded between 1961 and 1990, illustrating the effects of climate change. Nevertheless, 2022 was the warmest year in the United Kingdom.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily temperature data contain maximum and minimum temperatures (air, grass and concrete slab) measured over a period of up to 24 hours. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM, DLY3208 or AWSDLY messages. The data span from 1853 to 2023. For details on measurement techniques, including calibration information and changes in measurements, see section 5.2 of the MIDAS User Guide linked to from this record. Soil temperature data may be found in the UK soil temperature datasets linked from this record.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily temperature observations within the full MIDAS collection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in the United Kingdom increased to 10.14 celsius in 2023 from 10.13 celsius in 2022. This dataset includes a chart with historical data for the United Kingdom Average Temperature.
England's highest monthly mean air temperatures are typically recorded in July and August of each year. Since 2015, the warmest mean temperature was measured in July 2018 at 18.8 degrees Celsius. On the other hand, February of that same year registered the coolest temperature, at 2.6 degrees Celsius. In April 2025, the mean air temperature was 10.3 degrees Celsius, slightly higher than the same month the previous year. The English weather England is the warmest region in the United Kingdom and the driest. In 2024, the average annual temperature in England amounted to 10.73 degrees Celsius – around 1.1 degrees above the national mean. That same year, precipitation in England stood at about 1,020 millimeters. By contrast, Scotland – the wettest region in the UK – recorded over 1,500 millimeters of rainfall in 2024. Temperatures on the rise Throughout the last decades, the average temperature in the United Kingdom has seen an upward trend, reaching a record high in 2022. Global temperatures have experienced a similar pattern over the same period. This gradual increase in the Earth's average temperature is primarily due to various human activities, such as burning fossil fuels and deforestation, which lead to the emission of greenhouse gases. This phenomenon has severe consequences, including more frequent and intense weather events, rising sea levels, and adverse effects on human health and the environment.
These statistics show quarterly and monthly weather trends for:
They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.
Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.
All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.
If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.09°C.]What does the data show? This dataset shows the change in summer average temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. Note, as the values in this dataset are averaged over a season they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged over the summer period to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tas summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas summer change 2.0 median' is named 'tas_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.13°C.]What does the data show? This dataset shows the change in annual temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Note, as the values in this dataset are averaged over a year they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare annual average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.
PeriodDescription 1981-2000 baselineAverage temperature (°C) for the period 2001-2020 (recent past)Average temperature (°C) for the period 2001-2020 (recent past) changeTemperature change (°C) relative to 1981-2000 1.5°C global warming level changeTemperature change (°C) relative to 1981-2000 2°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-2000 3°C global warming level changeTemperature change (°C) relative to 1981-2000 4°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Annual Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for the 1981-2000 baseline, 2001-2020 period and each warming level. They are named 'tas annual change' (change in air 'temperature at surface'), the warming level or historic time period, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas annual change 2.0 median' is the median value for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas annual change 2.0 median' is named 'tas_annual_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas annual change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK soil temperature data contain daily and hourly values of soil temperatures at depths of 5, 10, 20, 30, 50, and 100 centimetres. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM or DLY3208 messages. The data spans from 1900 to 2022.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2022.
At many stations temperatures below the surface are measured at various depths. The depths used today are 5, 10, 20, 30 and 100cm, although measurements are not necessarily made at all these depths at a station and exceptionally measurements may be made at other depths. When imperial units were in general use, typically before 1961, the normal depths of measurement were 4, 8, 12, 24 and 48 inches.
Liquid-in-glass soil thermometers at a depth of 20 cm or less are unsheathed and have a bend in the stem between the bulb and the lowest graduation. At greater depths the thermometer is suspended in a steel tube and has its bulb encased in wax.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The longest available instrumental record of temperature in the world is now available at the BADC. The daily data starts in 1772.
The mean, minimum and maximum datasets are updated monthly, with data for a month usually available by the 3rd of the next month. A provisional CET value for the current month is calculated on a daily basis. The mean daily data series begins in 1772. Mean maximum and minimum daily and monthly data are also available, beginning in 1878. Yearly files are provided from 1998 onwards.
These historical temperature series are representative of the Midlands region in England, UK (a roughly triangular area of the United Kingdom enclosed by Bristol, Lancashire and London).
The following stations are used by the Met Office to compile the CET data: Rothamsted, Malvern, Squires Gate and Ringway.
But in November 2004, the weather station Stonyhurst replaced Ringway and revised urban warming and bias adjustments have now been applied to the Stonyhurst data after a period of reduced reliability from the station in the summer months.
The data set is compiled by the Met Office Hadley Centre.
The annual mean temperature in England has typically been the highest of the United Kingdom's countries. In 2024, it stood at 10.73 degrees Celsius, while the average temperature in Scotland was 8.17 degrees Celsius.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset contains meteorological observations taken from 72 locations around Great Britain, Ireland and Europe published in the 1900-1910 Met Office Daily Weather Reports (DWRs). These records were produced as part of the Operation Weather Rescue project.
Twice daily observations of mean sea level pressure and dry bulb temperature, along with daily wet bulb, maximum and minimum temperatures and total rainfall, were sent to the Met Office via telegraph for publication the DWRs. Some of the locations cover the entire 11 year period whereas others stopped reporting and may have been replaced by another location, and some locations were included in the DWRs from a later date. Additional observations of mean sea level pressure, dry bulb temperature and wet bulb temperature at 2pm are included for 1900 but these observations were no longer included in the DWRs after 1900. From November 1908 the German stations replaced wet bulb temperature with relative humidity.
The data is stored in two formats: in daily csv files with observations for each station and in Station Exchange Format (SEF) files for each station in separate variables. SEF is a human-readable text format saved as .tsv (tab separated values). In the csv files units are inches of mercury (inHg) for mean sea level pressure, degrees Fahrenheit (F) for all temperature variables, inches for rainfall and percent (%) for relative humidity. In the SEF files the units are hectopascals (hPa) for mean sea level pressure, degrees Celsius (C) for all temperature variables, millimetres (mm) for rainfall and percent for relative humidity.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Average Rainfall (mm) and average Temperature (centigrade) for the North East England and East England Met Office Climate district, which includes Lincolnshire. This dataset shows the average Rainfall in millimetres and average Temperature in centigrade, by month, meteorological season, and annual calendar year. The data is sourced from the UK Met Office website. See the Source link for more information about the data and the area it covers.
Monthly temperature deviations from the long-term mean in the United Kingdom have varied greatly in recent years. In March 2025, average temperatures were one degree Celsius warmer than the long-term mean. In comparison, temperatures in March 2024 were 1.1 degrees Celsius warmer than the long-term mean. The most notable deviation during this period was in December 2015, when temperatures were 4.3 degrees warmer than normal.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set was created using data from Copernicus for MEI's Big Earth Data Project.
MEI has developed resources to help students develop skills in exploring large Earth observation datasets while teaching them about the measurements satellites can take.
There are three sets of resources covering the ozone layer, climate change and flooding risks.
Site specific (293 individual stations) monthly average (1981 - 2010)
The data consists of:
Max Temp (degrees C)
Min Temp (degrees C)
Sunshine (hours)
Rainfall (mm)
Raindays >=1.0mm (days)
Days of Air Frost (days)
Monthly mean wind speeds at 10m (knots)
District and Region monthly average (1961-1990, 1971-2000, 1981-2010)
The data consists of:
Max Temp (degrees C)
Min Temp (degrees C)
Sunshine (hours)
Rainfall (mm)
Raindays >=1.0mm (days)
Days of Air Frost (days)
UK monthly average (1961-1990, 1971-2000, 1981-2010)
The data consists of:
Max Temp (degrees C)
Min Temp (degrees C)
Sunshine (hours)
Rainfall (mm)
Raindays >=1.0mm (days)
Days of Air Frost (days)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset shows the averaged current average temperature presented to sites across the UK from temperatures degrees per day, based on data collected from a 1981-2010 baseline period. The dataset shows the likelihood of a temperature hazard event distributed across 5km hexagonal grids.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">318 KB</span></p>
<p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
<details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
Request an accessible format.
If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@beis.gov.uk" target="_blank" class="govuk-link">enquiries@beis.gov.uk</a>. Please tell us what format you need. It will help us if you say what assistive technology you use.
<p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute">MS Excel Spreadsheet</span>, <span class="gem-c-attachment_attribute">241 KB</span></p>
<p class="gem-c-attachment_metadata">This file may not be suitable for users of assistive technology.</p>
<details data-module="ga4-event-tracker" data-ga4-event='{"event_name":"select_content","type":"detail","text":"Request an accessible format.","section":"Request an accessible format.","index_section":1}' class="gem-c-details govuk-details govuk-!-margin-bottom-0" title="Request an accessible format.">
Request an accessible format.
If you use assistive technology (such as a screen reader) and need a version of this document in a more accessible format, please email <a href="mailto:enquiries@beis.gov.uk" target="_blank" class="govuk-link">enquiries@beis.gov.uk</a>. Please tell us what format you need. It
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset shows the future average temperature presented to sites across the UK from temperatures per day, based on data for a 2060-2080 projection period. The dataset shows the likelihood of a temperature hazard event distributed across 5km hexagonal grids.
The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.