82 datasets found
  1. Monthly average daily temperatures in the United Kingdom 2015-2024

    • statista.com
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly average daily temperatures in the United Kingdom 2015-2024 [Dataset]. https://www.statista.com/statistics/322658/monthly-average-daily-temperatures-in-the-united-kingdom-uk/
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Nov 2024
    Area covered
    United Kingdom
    Description

    The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.

  2. Mean annual temperature in United Kingdom (UK) 1910-2024

    • statista.com
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Mean annual temperature in United Kingdom (UK) 1910-2024 [Dataset]. https://www.statista.com/statistics/610124/annual-mean-temperature-in-uk/
    Explore at:
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    The annual mean temperature in the United Kingdom has fluctuated greatly since 1990. Temperatures during this period were at their highest in 2022, surpassing 10 degrees Celsius. In 2010, the mean annual temperature stood at 7.94 degrees, the lowest recorded during this time. Daily temperatures Average daily temperatures have remained stable since the turn of the century, rarely dropping below 10 degrees Celsius. In 2010, they dropped to a low of nine degrees Celsius. The peak average daily temperature was recorded in 2022 when it reached 11.2 degrees. This was an increase of one degree Celsius compared to the long-term mean, and the most positive deviation during the period of consideration. Highs and lows The maximum average temperature recorded across the UK since 2015 was in July 2018. This month saw a maximum temperature of 22.6 degrees Celsius. In comparison, the lowest monthly minimum temperature was in February of the same year, at just minus 0.6 degrees. This was an especially cold February, as the previous year the minimum temperature for this month was 2.6 degrees.

  3. Average temperatures in the United Kingdom (UK) 1961-2023, by period

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Average temperatures in the United Kingdom (UK) 1961-2023, by period [Dataset]. https://www.statista.com/statistics/1033560/average-periodic-temperatures-united-kingdom/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United Kingdom
    Description

    The average temperature across the United Kingdom presented a trend of continuous growth since 1961. During the first period, from 1961 to 1990, the country recorded an average temperature of 8.3 degrees Celsius. In the next period, from 1991 to 2020, the UK's average temperature increased by 0.8 degrees Celsius and increased further by 0.5 degrees Celsius between 2014 and 2023. In the latter year, figures remained at 10 degrees Celsius, 1.7 degrees warmer than the average recorded between 1961 and 1990, illustrating the effects of climate change. Nevertheless, 2022 was the warmest year in the United Kingdom.

  4. T

    United Kingdom Average Temperature

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United Kingdom Average Temperature [Dataset]. https://tradingeconomics.com/united-kingdom/temperature
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    United Kingdom
    Description

    Temperature in the United Kingdom increased to 10.14 celsius in 2023 from 10.13 celsius in 2022. This dataset includes a chart with historical data for the United Kingdom Average Temperature.

  5. e

    Average Rainfall and Temperature

    • data.europa.eu
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council, Average Rainfall and Temperature [Dataset]. https://data.europa.eu/data/datasets/average-rainfall-temperature?locale=en
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Average Rainfall (mm) and average Temperature (centigrade) for the North East England and East England Met Office Climate district, which includes Lincolnshire.

    This dataset shows the average Rainfall in millimetres and average Temperature in centigrade, by month, meteorological season, and annual calendar year.

    The data is sourced from the UK Met Office website. See the Source link for more information about the data and the area it covers.

  6. Monthly mean temperature in England 2015-2025

    • statista.com
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly mean temperature in England 2015-2025 [Dataset]. https://www.statista.com/statistics/585133/monthly-mean-temperature-in-england-uk/
    Explore at:
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Apr 2025
    Area covered
    England, United Kingdom
    Description

    England's highest monthly mean air temperatures are typically recorded in July and August of each year. Since 2015, the warmest mean temperature was measured in July 2018 at 18.8 degrees Celsius. On the other hand, February of that same year registered the coolest temperature, at 2.6 degrees Celsius. In April 2025, the mean air temperature was 10.3 degrees Celsius, slightly higher than the same month the previous year. The English weather England is the warmest region in the United Kingdom and the driest. In 2024, the average annual temperature in England amounted to 10.73 degrees Celsius – around 1.1 degrees above the national mean. That same year, precipitation in England stood at about 1,020 millimeters. By contrast, Scotland – the wettest region in the UK – recorded over 1,500 millimeters of rainfall in 2024. Temperatures on the rise Throughout the last decades, the average temperature in the United Kingdom has seen an upward trend, reaching a record high in 2022. Global temperatures have experienced a similar pattern over the same period. This gradual increase in the Earth's average temperature is primarily due to various human activities, such as burning fossil fuels and deforestation, which lead to the emission of greenhouse gases. This phenomenon has severe consequences, including more frequent and intense weather events, rising sea levels, and adverse effects on human health and the environment.

  7. Summer Average Temperature Change - Projections (12km)

    • climatedataportal.metoffice.gov.uk
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Summer Average Temperature Change - Projections (12km) [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/TheMetOffice::summer-average-temperature-change-projections-12km/about
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Met Officehttp://www.metoffice.gov.uk/
    Area covered
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.09°C.]What does the data show? This dataset shows the change in summer average temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. Note, as the values in this dataset are averaged over a season they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged over the summer period to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tas summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas summer change 2.0 median' is named 'tas_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  8. a

    Winter Average Temperature Change - Projections (12km)

    • climate-themetoffice.hub.arcgis.com
    • climatedataportal.metoffice.gov.uk
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Winter Average Temperature Change - Projections (12km) [Dataset]. https://climate-themetoffice.hub.arcgis.com/items/4baa4ecb3b2942e5a31a244292735373
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Met Office
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.21°C.]What does the data show? This dataset shows the change in winter average temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, winter is defined as December-January-February. Note, as the values in this dataset are averaged over a season they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged over the winter period to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare winter average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Winter Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming.The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Winter Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tas winter change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas winter change 2.0 median' is the median value for winter for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas change winter 2.0 median' is named 'tas_winter_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas winter change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Winter Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  9. Energy Trends: UK weather

    • gov.uk
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Energy Security and Net Zero (2025). Energy Trends: UK weather [Dataset]. https://www.gov.uk/government/statistics/energy-trends-section-7-weather
    Explore at:
    Dataset updated
    May 29, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Energy Security and Net Zero
    Area covered
    United Kingdom
    Description

    These statistics show quarterly and monthly weather trends for:

    • temperatures
    • heating degree days
    • wind speed
    • sun hours
    • rainfall

    They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.

    Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.

    All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.

    ​Contact us​

    If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.

  10. Average Temperature (Current)

    • open-data-national-trust.hub.arcgis.com
    Updated Oct 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Trust (2022). Average Temperature (Current) [Dataset]. https://open-data-national-trust.hub.arcgis.com/datasets/average-temperature-current
    Explore at:
    Dataset updated
    Oct 31, 2022
    Dataset authored and provided by
    National Trusthttp://nationaltrust.org.uk/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset shows the averaged current average temperature presented to sites across the UK from temperatures degrees per day, based on data collected from a 1981-2010 baseline period. The dataset shows the likelihood of a temperature hazard event distributed across 5km hexagonal grids.

  11. e

    Average Rainfall and Temperature

    • data.europa.eu
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council, Average Rainfall and Temperature [Dataset]. https://data.europa.eu/data/datasets/average-rainfall-temperature/?locale=sk
    Explore at:
    csvAvailable download formats
    Dataset authored and provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Average rainfall (mm) and average temperature (centigrade) for the North East England and East England Met Office Climate district, which includes Lincolnshire.

    This dataset shows the average rainfall in millimetres and average temperature in centigrade by month, year, and meteorological season. It also has an annual figure for each year.

    The data is sourced from the UK Met Office website. See the Source link for more information about the data and the area it covers.

  12. Monthly minimum temperature in the UK 2015-2024

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly minimum temperature in the UK 2015-2024 [Dataset]. https://www.statista.com/statistics/584885/monthly-minimum-temperature-in-uk/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2015 - Dec 2024
    Area covered
    United Kingdom
    Description

    The United Kingdom's average minimum temperature in July 2021 measured 12.1 degrees Celsius. This month, recorded the highest minimum temperature during the reported period. Since 2015, the lowest monthly minimum temperature in the UK was recorded in February 2018, at -0.7 degrees Celsius. This was the first time during this period that the average monthly minimum temperature dropped below zero degrees Celsius, while in January 2021 the second time took place, at -0.5 degrees Celsius. Further information about the weather in the United Kingdom can be found here.

  13. n

    UKCP09: UK temperature projections from low, medium and high emissions...

    • data-search.nerc.ac.uk
    • catalogue.ceda.ac.uk
    Updated Dec 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). UKCP09: UK temperature projections from low, medium and high emissions scenarios' equivalent global temperature changes [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?format=The%20data%20are%20provided%20in%20NetCDF%20format%20and%20adhere%20to%20v1.0%20of%20the%20CF%20data%20conventions
    Explore at:
    Dataset updated
    Dec 27, 2023
    Area covered
    United Kingdom
    Description

    The UK Climate Projections 2009 (UKCP09) projections of temperature from low, medium and high emissions scenarios' equivalent global temperature changes. They are probabilistic climate predictions based on families of runs of the Met Office Hadley Centre climate models HadCM3, HadRM3 and HadSM3, plus climate models from other climate centres contributing to IPCC AR4 and CMIP3. The equivalent changes in global temperatures are taken from three emissions scenarios: low (IPCC SRES: B1), medium (IPCC SRES: A1B), and high (IPCC SRES: A1FI). Each scenario provides estimates over seven 30 year period averages: 2010-2039, 2030s = 2020-2049, 2040s = 2030-2059, 2050s = 2040-2069, 2060s = 2050-2079, 2070s = 2060-2089, 2080s = 2070-2099. Temperature changes are given relative to 1961-1990.

  14. c

    Monthly Mean, Minimum and Maximum Central England Temperature series

    • catalogue.ceda.ac.uk
    • data-search.nerc.ac.uk
    Updated Aug 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hadley Centre for Climate Prediction and Research (MOHC) (2022). Monthly Mean, Minimum and Maximum Central England Temperature series [Dataset]. https://catalogue.ceda.ac.uk/uuid/37acfb4514ca4ef7b711e2cf568280a4
    Explore at:
    Dataset updated
    Aug 2, 2022
    Dataset provided by
    NCAS British Atmospheric Data Centre (NCAS BADC)
    Authors
    Hadley Centre for Climate Prediction and Research (MOHC)
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Time period covered
    Jan 1, 1659 - Jul 31, 2022
    Area covered
    Variables measured
    Mean Surface Air Temperature, Maximum Surface Air Temperature, Minimum Surface Air Temperature
    Description

    The longest available instrumental record of temperature in the world is now available at the BADC. The monthly data starts in 1659.

    The mean, minimum and maximum datasets are updated monthly, with data for a month usually available by the 3rd of the next month. A provisional CET value for the current month is calculated on a daily basis. The mean monthly data series begins in 1659. Mean maximum and minimum daily and monthly data are also available, beginning in 1878.

    These historical temperature series are representative of the Midlands region in England, UK (a roughly triangular area of the United Kingdom enclosed by Bristol, Lancashire and London).

    The following stations are used by the Met Office to compile the CET data: Rothamsted, Malvern, Squires Gate and Ringway.

    But in November 2004, the weather station Stonyhurst replaced Ringway and revised urban warming and bias adjustments have now been applied to the Stonyhurst data after a period of reduced reliability from the station in the summer months.

    The data set is compiled by the Met Office Hadley Centre.

  15. n

    UKCP18 Derived time-series of global annual mean temperature increase of 4°C...

    • data-search.nerc.ac.uk
    • catalogue.ceda.ac.uk
    Updated Jul 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). UKCP18 Derived time-series of global annual mean temperature increase of 4°C (global warming level of 4°C) at 60km lat-lon Resolution for 1900-2100 [Dataset]. https://data-search.nerc.ac.uk/geonetwork/srv/search?keyword=mean
    Explore at:
    Dataset updated
    Jul 7, 2021
    Description

    Derived climate model projections data produced as part of the UK Climate Projections 2018 (UKCP18) project. The data produced by the UK Met Office Hadley Centre provides information on changes in 21st century climate for the UK helping to inform adaptation to a changing climate. The derived climate model projections are estimated using a methodology based on time shift and other statistical approaches applied to a set of 28 projections comprising of 15 coupled simulations produced by the Met Office Hadley Centre, and 13 coupled simulations from CMIP5. The derived climate model projections exist for the RCP2.6 emissions scenario and for 2°C and 4°C global warming above pre-industrial levels. The derived climate model projections are provided on a 60km spatial grid for the UK region and the projections consist of time series for the RCP2.6 emissions scenario that cover 1900-2100 and a 50 year time series for each of the global warming levels. This dataset contains realisations scenario with global warming stabilised at 4°C

  16. Monthly Global Temperature 1981-2010

    • climatedataportal.metoffice.gov.uk
    • climate-themetoffice.hub.arcgis.com
    Updated Aug 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2022). Monthly Global Temperature 1981-2010 [Dataset]. https://climatedataportal.metoffice.gov.uk/datasets/monthly-global-temperature-1981-2010/about
    Explore at:
    Dataset updated
    Aug 17, 2022
    Dataset authored and provided by
    Met Officehttp://www.metoffice.gov.uk/
    Area covered
    Description

    What does the data show?

    This data shows the monthly averages of surface temperature (°C) for 1981-2010 from CRU TS (v. 4.06) dataset. It is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator. This is the same as the 60km grid used by UKCP18 global datasets.

    What are the naming conventions and how do I explore the data?

    This data contains a field for each month’s average over the period. They are named 'tas' (temperature at surface) and the month. E.g. ‘tas March’ is the average of the daily average surface air temperatures in March throughout 1981-2010.

    To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578

    Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas January’ values.

    Data source

    CRU TS v. 4.06 - (downloaded 12/07/22)

    Useful links

    Further information on CRU TS Further information on understanding climate data within the Met Office Climate Data Portal

  17. a

    Monthly Global Max Temperature Projections 2070-2099

    • climate-themetoffice.hub.arcgis.com
    • climatedataportal.metoffice.gov.uk
    Updated Aug 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2022). Monthly Global Max Temperature Projections 2070-2099 [Dataset]. https://climate-themetoffice.hub.arcgis.com/datasets/monthly-global-max-temperature-projections-2070-2099
    Explore at:
    Dataset updated
    Aug 23, 2022
    Dataset authored and provided by
    Met Office
    Area covered
    Description

    What does the data show?

    This data shows the monthly averages of maximum surface temperature (°C) for 2070-2099 using a combination of the CRU TS (v. 4.06) and UKCP18 global RCP2.6 datasets. The RCP2.6 scenario is an aggressive mitigation scenario where greenhouse gas emissions are strongly reduced.

    The data combines a baseline (1981-2010) value from CRU TS (v. 4.06) with an anomaly from UKCP18 global. Where the anomaly is the change in temperature at 2070-2099 relative to 1981-2010.

    The data is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator.

    Limitations of the data

    We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.

    What are the naming conventions and how do I explore the data?

    This data contains a field for each month’s average over the period. They are named 'tmax' (temperature maximum), the month and ‘upper’ ‘median’ or ‘lower’. E.g. ‘tmax Mar Lower’ is the average of the daily minimum temperatures in March throughout 2070-2099, in the second lowest ensemble member.

    To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578

    Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tmax Jan Median’ values.

    What do the ‘median’, ‘upper’, and ‘lower’ values mean?

    Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.

    To select which ensemble members to use, the monthly averages of maximum surface temperature for the period 2070-2099 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.

    The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.

    This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.

    Data source

    CRU TS v. 4.06 - (downloaded 12/07/22)

    UKCP18 v.20200110 (downloaded 17/08/22)

    Useful links

    Further information on CRU TS Further information on the UK Climate Projections (UKCP) Further information on understanding climate data within the Met Office Climate Data Portal

  18. T

    TEMPERATURE by Country in EUROPE

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). TEMPERATURE by Country in EUROPE [Dataset]. https://tradingeconomics.com/country-list/temperature?continent=europe
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    Europe
    Description

    This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  19. a

    Annual Count of Extreme Summer Days - Projections (12km)

    • hub.arcgis.com
    • roadmap-to-climate-resilience-tep-thames.hub.arcgis.com
    Updated Feb 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Met Office (2023). Annual Count of Extreme Summer Days - Projections (12km) [Dataset]. https://hub.arcgis.com/datasets/2e0ede325c4540e59e02c351a51fa051
    Explore at:
    Dataset updated
    Feb 7, 2023
    Dataset authored and provided by
    Met Office
    Area covered
    Description

    [Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.0.]What does the data show? The Annual Count of Extreme Summer Days is the number of days per year where the maximum daily temperature is above 35°C. It measures how many times the threshold is exceeded (not by how much) in a year. Note, the term ‘extreme summer days’ is used to refer to the threshold and temperatures above 35°C outside the summer months also contribute to the annual count. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Extreme Summer Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of extreme summer days to previous values.What are the possible societal impacts?The Annual Count of Extreme Summer Days indicates increased health risks, transport disruption and damage to infrastructure from high temperatures. It is based on exceeding a maximum daily temperature of 35°C. Impacts include:Increased heat related illnesses, hospital admissions or death affecting not just the vulnerable. Transport disruption due to overheating of road and railway infrastructure.Other metrics such as the Annual Count of Summer Days (days above 25°C), Annual Count of Hot Summer Days (days above 30°C) and the Annual Count of Tropical Nights (where the minimum temperature does not fall below 20°C) also indicate impacts from high temperatures, however they use different temperature thresholds.What is a global warming level?The Annual Count of Extreme Summer Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Extreme Summer Days, an average is taken across the 21 year period. Therefore, the Annual Count of Extreme Summer Days show the number of extreme summer days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘ESD’ (where ESD means Extreme Summer Days, the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Extreme Summer Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Extreme Summer Days 2.5 median’ is ‘ExtremeSummerDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘ESD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Extreme Summer Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.

  20. Monthly minimum temperature in England 2015-2025

    • statista.com
    Updated Jan 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2015). Monthly minimum temperature in England 2015-2025 [Dataset]. https://www.statista.com/statistics/585064/monthly-minimum-temperature-in-england/
    Explore at:
    Dataset updated
    Jan 15, 2015
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Apr 2025
    Area covered
    England
    Description

    The lowest average minimum temperature recorded in England since 2015 was in February 2018, when temperatures dropped to -0.4 degrees Celsius. In comparison, in February 2025 the temperature was 2.2 degrees Celsius.Further information about the weather in the United Kingdom can be found here.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Monthly average daily temperatures in the United Kingdom 2015-2024 [Dataset]. https://www.statista.com/statistics/322658/monthly-average-daily-temperatures-in-the-united-kingdom-uk/
Organization logo

Monthly average daily temperatures in the United Kingdom 2015-2024

Explore at:
13 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 22, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2015 - Nov 2024
Area covered
United Kingdom
Description

The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.

Search
Clear search
Close search
Google apps
Main menu