Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The estimated median household income and estimated median family income are two separate measures: every family is a household, but not every household is a family. According to the U.S. Census Bureau definitions of the terms, a family “includes a householder and one or more people living in the same household who are related to the householder by birth, marriage, or adoption,”[1] while a household “includes all the people who occupy a housing unit,” including households of just one person[2]. When evaluated together, the estimated median household income and estimated median family income provide a thorough picture of household-level economics in Champaign County.
Both estimated median household income and estimated median family income were higher in 2023 than in 2005. The changes in estimated median household income and estimated median family income between 2022 and 2023 were not statistically significant. Estimated median family income is consistently higher than estimated median household income, largely due to the definitions of each term, and the types of household that are measured and are not measured in each category.
Median income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Median Household Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) and Median Family Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars).
[1] U.S. Census Bureau. (Date unknown). Glossary. “Family Household.” (Accessed 19 April 2016).
[2] U.S. Census Bureau. (Date unknown). Glossary. “Household.” (Accessed 19 April 2016).
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (18 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (3 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).
This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.
The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
VITAL SIGNS INDICATOR Income (EC4)
FULL MEASURE NAME Household income by place of residence
LAST UPDATED May 2019
DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.
DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org
U.S. Census Bureau: American Community Survey Form B19013 (2006-2017; place of residence) http://api.census.gov
Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2017; specific to each metro area) http://data.bls.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income.
Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.
This households below average income (HBAI) report presents information on living standards in the United Kingdom year on year from 1994/1995 to 2016/2017.
It provides estimates on the number and percentage of people living in low-income households based on disposable income. Figures are also provided for children, pensioners, working-age adults and individuals living in a family where someone is disabled.
Use our infographic to find out how low income is measured in HBAI.
Most of the figures in this report come from the Family Resources Survey, a representative survey of around 19,000 households in the UK.
We have published all of the data tables in ODS format.
Summary data tables are available on this page, with more detailed analysis available on the following pages:
In response to feedback, we have made these pages more user-friendly. We would like you to tell us what you think of this new format, to help us develop our statistics in the future. Email team.hbai@dwp.gov.uk with any questions or feedback.
VITAL SIGNS INDICATOR Income (EC5)
FULL MEASURE NAME Worker income by workplace (earnings)
LAST UPDATED October 2016
DESCRIPTION Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.
DATA SOURCE U.S. Census Bureau: Decennial Census Count 4Pb (1970) Form STF3 (1980-1990) Form SF3a (2000) https://nhgis.org
U.S. Census Bureau: American Community Survey Form B08521 (2006-2015; place of employment) http://api.census.gov
Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1970-2015; specific to each metro area) http://data.bls.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Income data reported in a given year reflects the income earned in the prior year (decennial Census) or in the prior 12 months (American Community Survey); note that this inconsistency has a minor effect on historical comparisons (for more information, go to: http://www.census.gov/acs/www/Downloads/methodology/ASA_nelson.pdf). American Community Survey 1-year data is used for larger geographies – metropolitan areas and counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Quintile income for 1970-2000 is imputed from Decennial Census data using methodology from the California Department of Finance (for more information, go to: http://www.dof.ca.gov/Forecasting/Demographics/Census_Data_Center_Network/documents/How_to_Recalculate_a_Median.pdf). Bay Area income is the population weighted average of county-level income.
Income has been inflated using the Consumer Price Index specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data is unavailable for some historical data points. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.
This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
VITAL SIGNS INDICATOR
Income (EC4)
FULL MEASURE NAME
Household income by place of residence
LAST UPDATED
January 2023
DESCRIPTION
Income reflects the median earnings of individuals and households from employment, as well as the income distribution by quintile. Income data highlight how employees are being compensated for their work on an inflation-adjusted basis.
DATA SOURCE
U.S. Census Bureau: Decennial Census - https://nhgis.org
Count 4Pb (1970)
Form STF3 (1980-1990)
Form SF3a (2000)
U.S. Census Bureau: American Community Survey - https://data.census.gov/
Form B19001 (2005-2021; household income by place of residence)
Form B19013 (2005-2021; median household income by place of residence)
Form B08521 (2005-2021; median worker earnings by place of employment)
Bureau of Labor Statistics: Consumer Price Index - https://www.bls.gov/data/
1970-2021
CONTACT INFORMATION
vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator)
Income derived from the decennial Census data reflects the income earned in the prior calendar year, whereas income derived from the American Community Survey (ACS) data reflects the prior 12 month period; note that this inconsistency has a minor effect on historical comparisons (see Income and Earnings Data section of the ACS General Handbook - https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs_general_handbook_2020_ch09.pdf). ACS 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
Quintile income for 1970-2000 is imputed from decennial Census data using methodology from the California Department of Finance. Bay Area income is the population weighted average of county-level income.
Income has been inflated using the Consumer Price Index (CPI) for 2021 specific to each metro area; however, some metro areas lack metro-specific CPI data back to 1970 and therefore adjusted data uses national CPI for 1970. Note that current MSA boundaries were used for historical comparison by identifying counties included in today’s metro areas.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
75% of households from the Bangladeshi ethnic group were in the 2 lowest income quintiles (after housing costs were deducted) between April 2021 and March 2024.
The data in this table breaks down median household income in each Virginia locality overall, as well as by race/ethnicity. (Median household income in the past 12 months in 2019 inflation-adjusted dollars.)
Note/explanation of value = -666666666 : A '-' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
Added +32,000 more locations. For information on data calculations please refer to the methodology pdf document. Information on how to calculate the data your self is also provided as well as how to buy data for $1.29 dollars.
The database contains 32,000 records on US Household Income Statistics & Geo Locations. The field description of the database is documented in the attached pdf file. To access, all 348,893 records on a scale roughly equivalent to a neighborhood (census tract) see link below and make sure to up vote. Up vote right now, please. Enjoy!
The dataset originally developed for real estate and business investment research. Income is a vital element when determining both quality and socioeconomic features of a given geographic location. The following data was derived from over +36,000 files and covers 348,893 location records.
Only proper citing is required please see the documentation for details. Have Fun!!!
Golden Oak Research Group, LLC. “U.S. Income Database Kaggle”. Publication: 5, August 2017. Accessed, day, month year.
2011-2015 ACS 5-Year Documentation was provided by the U.S. Census Reports. Retrieved August 2, 2017, from https://www2.census.gov/programs-surveys/acs/summary_file/2015/data/5_year_by_state/
Please tell us so we may provide you the most accurate data possible. You may reach us at: research_development@goldenoakresearch.com
for any questions you can reach me on at 585-626-2965
please note: it is my personal number and email is preferred
Check our data's accuracy: Census Fact Checker
Don't settle. Go big and win big. Optimize your potential. Overcome limitation and outperform expectation. Access all household income records on a scale roughly equivalent to a neighborhood, see link below:
Website: Golden Oak Research Kaggle Deals all databases $1.29 Limited time only
A small startup with big dreams, giving the every day, up and coming data scientist professional grade data at affordable prices It's what we do.
This dataset provides annual personal income estimates for State of Iowa counties produced by the U.S. Bureau of Economic Analysis beginning in 1997. Data includes the following estimates: personal income and per capita personal income. Personal income is defined as the sum of wages and salaries, supplements to wages and salaries, proprietors’ income, dividends, interest, and rent, and personal current transfer receipts, less contributions for government social insurance. Personal income is the income received by, or on behalf of all persons residing in the Iowa county, regardless of the duration of residence, except for foreign nationals employed by their home governments in Iowa. Per capita personal income is personal income divided by the Census Bureau’s annual midyear (July 1) population estimates for the county. More terms and definitions are available on https://apps.bea.gov/regional/definitions/. Less
Median household income is the middle value of the incomes earned in the prior year by households in an area. Income and earnings are inflation-adjusted for the last year of the 5-year period. The median value is used as opposed to the average so that both extremely high and extremely low prices do not distort the total amount of income earned by households in an area. Source: American Community SurveyYears Available: 2006-2010, 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
Track annual median household income for Town of Dumfries, Prince William County and the state of Virginia.
Data comes from the American Community Survey.
Accessible Tables and Improved Quality
As part of the Analysis Function Reproducible Analytical Pipeline Strategy, processes to create all National Travel Survey (NTS) statistics tables have been improved to follow the principles of Reproducible Analytical Pipelines (RAP). This has resulted in improved efficiency and quality of NTS tables and therefore some historical estimates have seen very minor change, at least the fifth decimal place.
All NTS tables have also been redesigned in an accessible format where they can be used by as many people as possible, including people with an impaired vision, motor difficulties, cognitive impairments or learning disabilities and deafness or impaired hearing.
If you wish to provide feedback on these changes then please contact us.
NTS0701: https://assets.publishing.service.gov.uk/media/68a43c0acd7b7dcfaf2b5e8e/nts0701.ods">Average number of trips, miles and time spent travelling by household car availability and personal car access: England, 2002 onwards (ODS, 37.8 KB)
NTS0702: https://assets.publishing.service.gov.uk/media/68a43c0a50939bdf2c2b5e86/nts0702.ods">Travel by personal car access, sex and mode: England, 2002 onwards (ODS, 91.5 KB)
NTS0703: https://assets.publishing.service.gov.uk/media/68a43c0aa66f515db69343e7/nts0703.ods">Household car availability by household income quintile: England, 2002 onwards (ODS, 18 KB)
NTS0704: https://assets.publishing.service.gov.uk/media/68a43c0acd7b7dcfaf2b5e8f/nts0704.ods">Adult personal car access by household income quintile, aged 17 and over: England, 2002 onwards (ODS, 23 KB)
NTS0705: https://assets.publishing.service.gov.uk/media/68a43c0a32d2c63f869343d9/nts0705.ods">Average number of trips and miles by household income quintile and mode: England, 2002 onwards (ODS, 81.7 KB)
NTS0706: https://assets.publishing.service.gov.uk/media/68a43c09246cc964c53d299f/nts0706.ods">Average number of trips and miles by household type and mode: England, 2002 onwards (ODS, 93.3 KB)
NTS0707: https://assets.publishing.service.gov.uk/media/68a43c0932d2c63f869343d8/nts0707.ods">Adult personal car access and trip rates, by ethnic group, aged 17 and over: England, 2002 onwards (ODS, 28.8 KB)
NTS0708: https://assets.publishing.service.gov.uk/media/68a43c09a66f515db69343e6/nts0708.ods">Average number of trips and miles by National Statistics Socio-economic Classification and mode, aged 16 and over: England, 2004 onwards (ODS</
This dataset demonstrates the affordability of the average Austin Water residential customer’s annual combined water and wastewater bill as a percentage of median household income. Austin Water utilized CensusReporter.org for 2019 and 2020 MHI data. The American Community Survey is the source for Census Reporter. Data sources: Austin Water Rates and Charges Team and American Community Survey (ACS) reported by the U.S. Census Bureau, DataUSA, and CensusReporter.org. View more details and insights related to this dataset on the story page: https://data.austintexas.gov/stories/s/Percent-of-median-household-income-spent-on-the-av/w8c4-v9a2
This publication gives previously published copies of the annual statistics about farm business income in England. Each publication gives the figures available at that time. The figures are subject to revision each year as new information becomes available.
The latest publication and accompanying data sets can be found here
Defra statistics: Farm Business Survey
Email mailto:fbs.queries@defra.gov.uk">fbs.queries@defra.gov.uk
<p class="govuk-body">You can also contact us via X: <a href="https://x.com/DefraStats" class="govuk-link">https://x.com/DefraStats</a></p>
The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers.Dataset taken from https://data.chhs.ca.gov/dataset/income-inequalityData Dictionary: COLUMN NAMEDEFINITIONFORMATCODINGind_idIndicator IDPlain Text770ind_definitionDefinition of indicator in plain languagePlain TextFree textreportyearYear(s) that the indicator was reportedPlain Text2005-2007, 2008-2010, 2006-2010. 2005-2007, 2008-2010, and 2006-2010 data is from the American Community Survey (ACS), U.S. Census Bureau. The ACS is a continuous survey. ACS estimates are period estimates that describe the average characteristics of the population in a period of data collection. The multiyear estimates are averages of the characteristics over several years. For example, the 2005-2007 ACS 3-year estimates are averages over the period from January 1, 2005 to December 31, 2007. Multiyear estimates cannot be used to say what was going on in any particular year in the period, only what the average value is over the full time period (Source: http://www.census.gov/acs/www/about_the_survey/american_community_survey/).race_eth_codenumeric code for a race/ethnicity groupPlain Text9=Totalrace_eth_nameName of race/ethnic groupPlain Text9=TotalgeotypeType of geographic unitPlain TextPL=Place (includes cities, towns, and census designated places -CDP-. It does not include unincorporated communities); CO=County; RE=region; CA=StategeotypevalueValue of geographic unitPlain Text9-digit Census tract code; 5-digit FIPS place code; 5-digit FIPS county code; 2-digit region ID; 2-digit FIPS state codegeonameName of geographic unitPlain Textplace name, county name, region name, or state namecounty_nameName of county that geotype is inPlain TextNot available for geotypes RE and CAcounty_fipsFIPS code of county that geotype is inPlain Text2-digit census state code (06) plus 3-digit census county coderegion_nameMetopolitan Planning Organization (MPO)-based region name: see MPO_County List TabPlain TextMetropolitan Planning Organizations (MPO) regions as reported in the 2010 California Regional Progress Report (http://www.dot.ca.gov/hq/tpp/offices/orip/Collaborative%20Planning/Files/CARegionalProgress_2-1-2011.pdf).region_codeMetopolitan Planning Organization (MPO)-based region code: see MPO_CountyList tabPlain Text01=Bay Area; 08=Sacramento Area; 09=San Diego; 14=Southern CaliforniaNumber_HouseholdsNumber of households in a jurisdictionNumericGini_indexCumulative percentage of household income relative to the cumulative percentage of the number of households expressed on a 0 to 1 scale called the Gini Index. The index ranges from 0.0, when all families (households) have equal shares of income, to 1.0, when one family (household) has all the income and the rest none (https://www.census.gov/prod/2000pubs/p60-204.pdf).NumericLL_95CILower limit of 95% confidence intervalNumericLower limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.UL_95CIUpper limit of 95% confidence intervalNumericUpper limit of 95% confidence interval. The 95% confidence limits depict the range within which the percentage would probably occur in 95 of 100 sets of data (if data similar to the present set were independently acquired on 100 separate occasions). In five of those 100 data sets, the percentage would fall outside the limits.seStandard error of percent NumericThe standard error (SE) of the estimate of the mean is a measure of the precision of the sample mean. The standard error falls as the sample size increases. (Reference: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1255808/)rseRelative standard error (se/percent * 100) expressed as a percentNumericThe relative standard error (RSE) provides the rational basis for determining which rates may be considered “unreliable.” Conforming to National Center for Health Statistics (NCHS) standards, rates that are calculated from fewer than 20 data elements, the equivalent of an RSE of 23 percent or more, are considered unreliable. From: http://www.cdph.ca.gov/programs/ohir/Documents/OHIRProfiles2014.pdfCA_decileDecilesNumeric"CA_decile" groups places or census tracts into 10 groups (or deciles) according to the distribution of values of the index (Gini_index). The first decile (1) corresponds to the highest Gini indices; the tenth decile (10) corresponds to the lowest Gini indices. Equal values or 'ties' are assigned the mean decile rank. For example, in a database of 100 records where 70 records equal 0, 0 values span from the 1st to 7th deciles (70% of all data records). As a result, all 0 values will be assigned to the 4th decile: the mean between the 1st and 7th deciles. The deciles are only calculated for places and/or census tracts.CA_RRIndex ratio to state indexNumericRatio of local index to state index. This indicates how many times the local index is higher or lower than the state index (Reference: http://health.mo.gov/training/epi/RateRatio-b.html). Values higher than 1 indicate local index is higher than state index.Median_HH_incomeMedian household income data is provided for users to stratify the Gini index by income deciles for places and countiesNumericMedian_HH_decileMedian household income data is provided for users to stratify the Gini index by income deciles for places and countiesNumericversionDate/time stamp of version of dataDate/Timemm/DD/CCYY hh:mm:ss
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The estimated median household income and estimated median family income are two separate measures: every family is a household, but not every household is a family. According to the U.S. Census Bureau definitions of the terms, a family “includes a householder and one or more people living in the same household who are related to the householder by birth, marriage, or adoption,”[1] while a household “includes all the people who occupy a housing unit,” including households of just one person[2]. When evaluated together, the estimated median household income and estimated median family income provide a thorough picture of household-level economics in Champaign County.
Both estimated median household income and estimated median family income were higher in 2023 than in 2005. The changes in estimated median household income and estimated median family income between 2022 and 2023 were not statistically significant. Estimated median family income is consistently higher than estimated median household income, largely due to the definitions of each term, and the types of household that are measured and are not measured in each category.
Median income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes datasets on Median Household Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) and Median Family Income in the Past 12 Months (in 2020 Inflation-Adjusted Dollars).
[1] U.S. Census Bureau. (Date unknown). Glossary. “Family Household.” (Accessed 19 April 2016).
[2] U.S. Census Bureau. (Date unknown). Glossary. “Household.” (Accessed 19 April 2016).
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (18 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (3 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using data.census.gov; (7 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1903; generated by CCRPC staff; using American FactFinder; (16 March 2016).