Facebook
TwitterThis statistic shows the share of customers in the U.S. and worldwide by if they have ever stopped doing business with a brand due to a poor customer service experience in 2018. During the survey, 62 percent of respondents from the United States stated that they have stopped doing business with a brand due to a poor customer service experience.
Facebook
Twitter*******, the television provider, was voted as the worst rated company for customer service in the United States in 2020, receiving the largest share of negative responses (** percent). Second in the list came Well Fargo and DIRECTV, with ** percent of respondents to the survey complaining about poor customer service. Customer service in the U.S. Good customer service is imperative for a company to do well and keep their customers. In 2020, 58 percent of customers in the United States have contacted customer service in the past month, while 40 percent of customers reported that they stopped doing business with a company as a result of poor customer service. This indicates that poor customer service is a significant deal breaker for a large part of consumers. The most used method to contact customer service is through voice channels, with ** percent of respondents mentioning it as their preferred method. Chatbots Another tool used in customer service is chatbots. Chatbots are artificial intelligence used to respond via online messaging and replacing the human factor. If customers had accessibility to effective chatbots, they would have a variety of benefits. However, 64 percent of respondents say they expect to enjoy 24-hour service the most. On the other hand, ** percent of respondents said that they would stop using a chatbot if they could deal with a real-life assistant. Additionally, ** percent of customers reported that their number one dislike of using chatbots was that it kept them from using a live person.
Facebook
TwitterThis statistic shows the share of customers worldwide by their opinion about the most frustrating aspect of a poor customer service experience in 2018, by age. During the survey, 26 percent of respondents, aged between 18 and 34 years, cited not being able to resolve their issue on their own using self-service as one of the most frustrating aspect of a poor customer service experience.
Facebook
TwitterAccording to a survey conducted in March 2024 among online shoppers, ** percent of consumers in the United States had stopped shopping with a brand they received poor customer service from, while ** percent of them had written a bad review online. Meanwhile, about ** percent had shared their experience on social media.
Facebook
TwitterA March 2022 survey asked the public about their opinion on customer service at restaurants in the United States. The majority of respondents, ** percent, reported having a good opinion of customer service. Meanwhile, **** percent of respondents had a poor opinion.
Facebook
TwitterThis statistic shows the percentage of consumers who would switch service provider after one incidence of bad customer service in the United Kingdom in 2013, by organisation type. Of respondents, ** percent claimed they would change their credit card provider after a bad customer service experience and ** percent would change their insurance company in the same case.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 13 verified Appliances customer service businesses in New Jersey, United States with complete contact information, ratings, reviews, and location data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset supports the article entitled "Effects of Customer Reviews on Product Sales of Strong Brands: A Qualitative Comparative Analysis."
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a comprehensive and realistic representation of customer sentiment across multiple online and offline shopping platforms. It contains 25,000 customer feedback records, each including demographic attributes, product categories, purchase channels, ratings, review text, and sentiment classification.
The dataset reflects how customers express their experiences on platforms such as Amazon, Flipkart, Meesho, Facebook Marketplace, Myntra, Ajio, Nykaa, Croma, Boat, Reliance Digital, BigBasket, JioMart, Swiggy Instamart, Zepto, and many others. It captures a wide spectrum of sentiments, from highly satisfied customers praising product quality and delivery speed to dissatisfied users reporting issues such as delayed deliveries, low-quality items, or unsatisfactory support.
Each review is paired with a star rating (1 to 5). Ratings of 4 and 5 are mapped to positive sentiment, 3 to neutral, and 1 and 2 to negative sentiment. Corresponding review text is generated to match the sentiment tone, making the dataset ideal for text and sentiment understanding.
In addition to sentiment and rating, the dataset includes essential service metrics such as response time (in hours), whether the issue was resolved, and whether a formal complaint was registered. This creates a richer ecosystem of customer experience and feedback patterns.
The dataset is suitable for a wide variety of uses, including customer insight studies, retail analytics, sentiment analysis, product review exploration, behavior understanding, or business decision making. Since the dataset is fully synthetic and free from personal identifiers, it is safe for all academic, analytical, and research purposes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 45 verified Appliances customer service businesses in Venezuela with complete contact information, ratings, reviews, and location data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 937 verified Appliances customer service businesses in United States with complete contact information, ratings, reviews, and location data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 5 verified Appliances customer service businesses in Alicante, Spain with complete contact information, ratings, reviews, and location data.
Facebook
TwitterEach week we send thousands of consumers' complaints about financial products and services to companies for response. Those complaints are published here after the company responds, confirming a commercial relationship with the consumer, or after 15 days, whichever comes first. Complaint narratives are consumers' descriptions of their experiences in their own words. By adding their voice, consumers help improve the financial marketplace. The database generally updates daily.
Facebook
TwitterCustomer reviews are the most crucial information for a company to understand the perspective of the user about the product or service. The dataset is web scraped from Trustpilot website for Nike online store customer reviews.
Reviewer - reviewer of the product Title Content - header of the review title Star_rating - star rating between 1-5 Rating - poor, excellent, good Date - year.month.date format of published date for review Reviews_posted - reviews posted by the reviewer on the website Location - reviewer location
this data is part of Trustpilot reviews website which is web scraped
This is the inspiration for me to learn about web scraping to understand the perspective of a real user of the product
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Samsung Customer Reviews Dataset contains 1,000 customer reviews of various Samsung products, including smartphones, tablets, TVs, and smartwatches. User feedback, ratings, and timestamps are included, which are useful for emotional analysis, customer satisfaction surveys, and product quality assessment.
2) Data Utilization (1) Samsung Customer Reviews Dataset has characteristics that: • This dataset contains structured text and numerical information for each review, including product name, username, rating, review title, review body, and creation date, for detailed analysis by review. (2) Samsung Customer Reviews Dataset can be used to: • Customer Opinion Analysis and Emotional Classification: Review texts and ratings can be used to identify customer positive and negative emotions, major complaints and compliments about Samsung products, and to improve products and develop marketing strategies. • Comparison of satisfaction and trend analysis by product: By analyzing review data by product group and period, market trends such as popular products, changes in customer preferences, and repeatedly mentioned issues can be derived and used for competitor analysis or new product planning.
Facebook
TwitterPremium B2C Consumer Database - 269+ Million US Records
Supercharge your B2C marketing campaigns with comprehensive consumer database, featuring over 269 million verified US consumer records. Our 20+ year data expertise delivers higher quality and more extensive coverage than competitors.
Core Database Statistics
Consumer Records: Over 269 million
Email Addresses: Over 160 million (verified and deliverable)
Phone Numbers: Over 76 million (mobile and landline)
Mailing Addresses: Over 116,000,000 (NCOA processed)
Geographic Coverage: Complete US (all 50 states)
Compliance Status: CCPA compliant with consent management
Targeting Categories Available
Demographics: Age ranges, education levels, occupation types, household composition, marital status, presence of children, income brackets, and gender (where legally permitted)
Geographic: Nationwide, state-level, MSA (Metropolitan Service Area), zip code radius, city, county, and SCF range targeting options
Property & Dwelling: Home ownership status, estimated home value, years in residence, property type (single-family, condo, apartment), and dwelling characteristics
Financial Indicators: Income levels, investment activity, mortgage information, credit indicators, and wealth markers for premium audience targeting
Lifestyle & Interests: Purchase history, donation patterns, political preferences, health interests, recreational activities, and hobby-based targeting
Behavioral Data: Shopping preferences, brand affinities, online activity patterns, and purchase timing behaviors
Multi-Channel Campaign Applications
Deploy across all major marketing channels:
Email marketing and automation
Social media advertising
Search and display advertising (Google, YouTube)
Direct mail and print campaigns
Telemarketing and SMS campaigns
Programmatic advertising platforms
Data Quality & Sources
Our consumer data aggregates from multiple verified sources:
Public records and government databases
Opt-in subscription services and registrations
Purchase transaction data from retail partners
Survey participation and research studies
Online behavioral data (privacy compliant)
Technical Delivery Options
File Formats: CSV, Excel, JSON, XML formats available
Delivery Methods: Secure FTP, API integration, direct download
Processing: Real-time NCOA, email validation, phone verification
Custom Selections: 1,000+ selectable demographic and behavioral attributes
Minimum Orders: Flexible based on targeting complexity
Unique Value Propositions
Dual Spouse Targeting: Reach both household decision-makers for maximum impact
Cross-Platform Integration: Seamless deployment to major ad platforms
Real-Time Updates: Monthly data refreshes ensure maximum accuracy
Advanced Segmentation: Combine multiple targeting criteria for precision campaigns
Compliance Management: Built-in opt-out and suppression list management
Ideal Customer Profiles
E-commerce retailers seeking customer acquisition
Financial services companies targeting specific demographics
Healthcare organizations with compliant marketing needs
Automotive dealers and service providers
Home improvement and real estate professionals
Insurance companies and agents
Subscription services and SaaS providers
Performance Optimization Features
Lookalike Modeling: Create audiences similar to your best customers
Predictive Scoring: Identify high-value prospects using AI algorithms
Campaign Attribution: Track performance across multiple touchpoints
A/B Testing Support: Split audiences for campaign optimization
Suppression Management: Automatic opt-out and DNC compliance
Pricing & Volume Options
Flexible pricing structures accommodate businesses of all sizes:
Pay-per-record for small campaigns
Volume discounts for large deployments
Subscription models for ongoing campaigns
Custom enterprise pricing for high-volume users
Data Compliance & Privacy
VIA.tools maintains industry-leading compliance standards:
CCPA (California Consumer Privacy Act) compliant
CAN-SPAM Act adherence for email marketing
TCPA compliance for phone and SMS campaigns
Regular privacy audits and data governance reviews
Transparent opt-out and data deletion processes
Getting Started
Our data specialists work with you to:
Define your target audience criteria
Recommend optimal data selections
Provide sample data for testing
Configure delivery methods and formats
Implement ongoing campaign optimization
Why We Lead the Industry
With over two decades of data industry experience, we combine extensive database coverage with advanced targeting capabilities. Our commitment to data quality, compliance, and customer success has made us the preferred choice for businesses seeking superior B2C marketing performance.
Contact our team to discuss your specific targeting requirements and receive custom pricing for your marketing objectives.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 15 verified Appliances customer service businesses in Minnesota, United States with complete contact information, ratings, reviews, and location data.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Huggingface Hub [source]
The Amazon Reviews Polarity Dataset discloses eighteen years of customers' ratings and reviews from Amazon.com, offering an unparalleled trove of insight and knowledge. Drawing from the immense pool of over 35 million customer reviews, this dataset presents a broad spectrum of customer opinions on products they have bought or used. This invaluable data is a gold mine for improving products and services as it contains comprehensive information regarding customers' experiences with a product including ratings, titles, and plaintext content. At the same time, this dataset contains both customer-specific data along with product information which encourages deep analytics that could lead to great advances in providing tailored solutions for customers. Has your product been favored by the majority? Are there any aspects that need extra care? Use Amazon Reviews Polarity to gain deeper insights into what your customers want - explore now!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Analyze customer ratings to identify trends: Take a look at how many customers have rated the same product or service with the same score (e.g., 4 stars). You can use this information to identify what customers like or don’t like about it by examining common sentiment throughout the reviews. Identifying these patterns can help you make decisions on which features of your products or services to emphasize in order to boost sales and satisfaction rates.
2 Review content analysis: Analyzing review content is one of the best ways to gauge customer sentiment toward specific features or aspects of a product/service. Using natural language processing tools such as Word2Vec, Latent Dirichlet Allocation (LDA), or even simple keyword search algorithms can quickly reveal general topics that are discussed in relation to your product/service across multiple reviews - allowing you quickly pinpoint areas that may need improvement for particular items within your lines of business.
3 Track associated scores over time: By tracking customer ratings overtime, you may be able to better understand when there has been an issue with something specific related to your product/service - such as negative response toward a feature that was introduced but didn’t seem popular among customers and was removed shortly after introduction.. This can save time and money by identifying issues before they become widespread concerns with larger sets of consumers who invest their money in using your company's item(s).
4 Visualize sentiment data over time graphs : Utilizing visualizations such as bar graphs can help identify trends across different categories quicker than raw numbers alone; combining both numeric values along with color differences associated between different scores allows you spot anomalies easier - allowing faster resolution times when trying figure out why certain spikes occurred where other stayed stable (or vice-versa) when comparing similar data points through time-series based visualization models
- Developing a customer sentiment analysis system that can be used to quickly analyze the sentiment of reviews and identify any potential areas of improvement.
- Building a product recommendation service that takes into account the ratings and reviews of customers when recommending similar products they may be interested in purchasing.
- Training a machine learning model to accurately predict customers’ ratings on new products they have not yet tried and leverage this for further product development optimization initiatives
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: train.csv | Column name | Description | |:--------------|:-------------------------------------------------------------------| | label | The sentiment of the review, either positive or negative. (String) | | title | The title of the review. (String) ...
Facebook
TwitterBy Crawl Feeds [source]
GameStop Product Reviews Dataset
Comprehensive and Detailed Customer Reviews and Ratings of Products from GameStop
Data Overview:
This dataset comprises a rich variety of information centered on customer reviews and ratings for products purchased from GameStop. For each review, the data includes detailed aspects such as the product name, brand, SKU (Stock Keeping Unit), helpful and non-helpful votes count, reviewer's name along with their review title & description. Further insights can be found through additional features that outline whether or not the reviewer recommends the product, whether they are a verified purchaser and encompass individual & average ratings for each product.
Other significant facets encapsulated within this valuable resource involve multimedia elements like images posted in reviews. To verify temporal relevance, timestamps revealing when the review was written (reviewed_at) as well as when the data was collected (scraped_at) are provided.
Additionally, URLs related to both specific items up for purchase (url) at GameStop's site and other users' reviews pages (reviews_link) have been accumulated within. The total number of customer feedback posts per item is also available under reviews_count series.
Structure:
The dataset structure presents serialized versions of the afore-mentioned fields. This includes strings such as 'name', 'brand', 'review_title', etc; date times including 'reviewed_at' and 'scraped_at'; floating point numbers such as 'rating' & 'average_rating'; integers representing counts ('helpful_count','not_helpful_count' ); boolean flags determining reviewers recommendations or verified purchase status ('recommended_review','verifed_purchaser') along with some potential null entries spotted across several columns making it dynamic yet intuitive even to an unfamiliar eye.
Use Case:
This dataset can serve multiple functions depending largely on user requirements.There are intriguing prospects around tracking consumer sentiments across time periods which could lend fascinating insights into sales patterns.Another possibility might revolve around determining best selling items or brands on GameStop according to customer impressions and sales counts. Additionally, there is potential to link buying trends with whether the product was purchased legitimately or not.
This dataset could also be used by product managers to enhance existing ones or create improved versions of them taking into account customer suggestions from their review content.Finaly, marketing teams could use this dataset to strategize campaigns by identifying products with positive reviews & scaling promotions for those.
Of course,the versatility of this resource opens up vast domains, ranging from sentiment analysis and recommendation systems using machine learning methodologies,to data visualization projects that help demonstrate consumer trends in a more approachable
Sentiment Analysis: Use the 'review_description' field to understand customer sentiment towards specific products. NLP techniques can be deployed to derive sentiments from reviews text, which could help in understanding overall consumer opinion.
Brand Analysis: Use the 'brand' field for comparative analysis of various brands sold on GameStop's platform.
Product Recommendation System: Develop a product recommendation system based on the user's past purchase record represented by 'brand', 'sku', and past reviews.
Customer Segmentation: Analyse fields like 'rating', 'recommended_review', and 'verifed_purchaser' for advanced segmentation of customers.
Product Performance Analysis: By examining fields like average rating (average_rating), number of reviews (reviews_count), recommend status (recommended_review), one can gauge how well a product is performing or received by customers.
Review Popularity Analysis: The dataset features two interesting variables - helpful_count and not_helpful_count; these reflect how other users perceived a review’s usefulness in helping them make purchasing decisions.
7 .**Time Series Forecasting**: Although we're instructed not to include any dates here, don't forget that this dataset has temporal elements ('reviewed_at') you could use for forecasting trends over time!
8 .**Reviewer Trustworthiness Assessment**: The verified purchaser field can be used as an indicator for trustworthiness of the review or reviewer bias.
P...
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Access our Trustpilot Reviews Data in CSV Format, offering a comprehensive collection of customer reviews from Trustpilot.
This dataset includes detailed reviews, ratings, and feedback across various industries and businesses. Available in a convenient CSV format, it is ideal for market research, sentiment analysis, and competitive benchmarking.
Leverage this data to gain insights into customer satisfaction, identify trends, and enhance your business strategies. Whether you're analyzing consumer sentiment or conducting competitive analysis, this dataset provides valuable information to support your needs.
Facebook
TwitterThis statistic shows the share of customers in the U.S. and worldwide by if they have ever stopped doing business with a brand due to a poor customer service experience in 2018. During the survey, 62 percent of respondents from the United States stated that they have stopped doing business with a brand due to a poor customer service experience.