11 datasets found
  1. COVID-19 Global Case and Death Data

    • kaggle.com
    zip
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). COVID-19 Global Case and Death Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/covid-19-global-case-and-death-data
    Explore at:
    zip(81724234 bytes)Available download formats
    Dataset updated
    Dec 4, 2023
    Authors
    The Devastator
    Description

    COVID-19 Global Case and Death Data

    Global COVID-19 Cases and Deaths Over Time

    By Coronavirus (COVID-19) Data Hub [source]

    About this dataset

    The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.

    The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.

    Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.

    Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.

    To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.

    It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.

    Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic

    How to use the dataset

    • Understanding the Dataset Structure:

      • The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
      • Both files contain different columns that provide information about the COVID-19 cases and deaths.
      • Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
    • Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.

    • Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.

    • Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.

    • Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.

    • Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.

    • Comparing Countries/Regions: Compare COVID-19

    Research Ideas

    • Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
  2. COVID-19 Deaths Mapping Tool - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2020). COVID-19 Deaths Mapping Tool - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/covid-19-deaths-mapping-tool
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    This mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing

  3. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  4. UK daily COVID data - countries and regions

    • kaggle.com
    zip
    Updated Mar 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alberto Vidal (2024). UK daily COVID data - countries and regions [Dataset]. https://www.kaggle.com/datasets/albertovidalrod/uk-daily-covid-data-countries-and-regions
    Explore at:
    zip(1177117 bytes)Available download formats
    Dataset updated
    Mar 26, 2024
    Authors
    Alberto Vidal
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Dataset description

    Daily official UK Covid data. The data is available per country (England, Scotland, Wales and Northern Ireland) and for different regions in England. The different regions are split into two different files as part of the data is directly gathered by the NHS (National Health Service). The files that contain the word 'nhsregion' in their name, include data related to hospitals only, such as number of admissions or number of people in respirators. The files containing the word 'region' in their name, include the rest of the data, such as number of cases, number of vaccinated people or number of tests performed per day. The next paragraphs describe the columns for the different file types.

    Region files

    Files related to regions (word 'region' included in the file name) have the following columns: - "date": date in YYYY-MM-DD format - "area type": type of area covered in the file (region or nation) - "area name": name of area covered in the file (region or nation name) - "daily cases": new cases on a given date - "cum cases": cumulative cases - "new deaths 28days": new deaths within 28 days of a positive test - "cum deaths 28days": cumulative deaths within 28 days of a positive test - "new deaths_60days": new deaths within 60 days of a positive test - "cum deaths 60days": cumulative deaths within 60 days of a positive test - "new_first_episode": new first episodes by date - "cum_first_episode": cumulative first episodes by date - "new_reinfections": new reinfections by specimen data - "cum_reinfections": cumualtive reinfections by specimen data - "new_virus_test": new virus tests by date - "cum_virus_test": cumulative virus tests by date - "new_pcr_test": new PCR tests by date - "cum_pcr_test": cumulative PCR tests by date - "new_lfd_test": new LFD tests by date - "cum_lfd_test": cumulative LFD tests by date - "test_roll_pos_pct": percentage of unique case positivity by date rolling sum - "test_roll_people": unique people tested by date rolling sum - "new first dose": new people vaccinated with a first dose - "cum first dose": cumulative people vaccinated with a first dose - "new second dose": new people vaccinated with a first dose - "cum second dose": cumulative people vaccinated with a first dose - "new third dose": new people vaccinated with a booster or third dose - "cum third dose": cumulative people vaccinated with a booster or third dose

    Country files

    Files related to countries (England, Northern Ireland, Scotland and Wales) have the above columns and also: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max

    NHS Region files

    Files related to nhsregion (word 'nhsregion' included in the file name) have the following columns: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max

    It's worth noting that the dataset hasn't been cleaned and it needs cleaning. Also, different files have different null columns. This isn't an error in the dataset but the way different countries and regions report the data.

  5. a

    COVID-19 Cases US

    • data-brookhavenga.opendata.arcgis.com
    • coronavirus-resources.esri.com
    • +9more
    Updated Mar 21, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). COVID-19 Cases US [Dataset]. https://data-brookhavenga.opendata.arcgis.com/items/628578697fb24d8ea4c32fa0c5ae1843
    Explore at:
    Dataset updated
    Mar 21, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US and Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by the Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.IMPORTANT NOTICE: 1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.Data Field Descriptions by Alias Name:Province/State: (Text) Country Province or State Name (Level 2 Key)Country/Region: (Text) Country or Region Name (Level 1 Key)Last Update: (Datetime) Last data update Date/Time in UTCLatitude: (Float) Geographic Latitude in Decimal Degrees (WGS1984)Longitude: (Float) Geographic Longitude in Decimal Degrees (WGS1984)Confirmed: (Long) Best collected count of Confirmed Cases reported by geographyRecovered: (Long) Not Currently in Use, JHU is looking for a sourceDeaths: (Long) Best collected count for Case Deaths reported by geographyActive: (Long) Confirmed - Recovered - Deaths (computed) Not Currently in Use due to lack of Recovered dataCounty: (Text) US County Name (Level 3 Key)FIPS: (Text) US State/County CodesCombined Key: (Text) Comma separated concatenation of Key Field values (L3, L2, L1)Incident Rate: (Long) People Tested: (Long) Not Currently in Use Placeholder for additional dataPeople Hospitalized: (Long) Not Currently in Use Placeholder for additional data

  6. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • avatarcrewapp.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  7. World Covid vaccination

    • kaggle.com
    zip
    Updated Aug 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pritesh Raj (2021). World Covid vaccination [Dataset]. https://www.kaggle.com/datasets/priteshraj10/covid-vaccination-all-countries-data/data
    Explore at:
    zip(894322 bytes)Available download formats
    Dataset updated
    Aug 30, 2021
    Authors
    Pritesh Raj
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Data on COVID-19 (coronavirus) Vaccination

    Our complete COVID-19 dataset is a collection of the COVID-19 data. We will update it daily throughout the duration of the COVID-19 pandemic. It includes the following data:

    MetricsSourceUpdatedCountries
    VaccinationsOfficial data collated by the Our World in Data teamDaily217
    Tests & positivityOfficial data collated by the Our World in Data teamWeekly136
    Hospital & ICUOfficial data collated by the Our World in Data teamWeekly35
    Confirmed casesJHU CSSE COVID-19 DataDaily194
    Confirmed deathsJHU CSSE COVID-19 DataDaily194
    Reproduction rateArroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno CDaily185
    Policy responsesOxford COVID-19 Government Response TrackerDaily186
    Other variables of interestInternational organizations (UN, World Bank, OECD, IHME…)Fixed240

    The complete Our World in Data COVID-19 dataset

    The CSV and files follow a format of 1 row per location and date. This version is split by country ISO code, with static variables and an array of daily records.

    The variables represent all of our main data related to confirmed cases, deaths, hospitalizations, and testing, as well as other variables of potential interest.

    Confirmed cases

    VariableDescription
    total_casesTotal confirmed cases of COVID-19
    new_casesNew confirmed cases of COVID-19
    new_cases_smoothedNew confirmed cases of COVID-19 (7-day smoothed)
    total_cases_per_millionTotal confirmed cases of COVID-19 per 1,000,000 people
    new_cases_per_millionNew confirmed cases of COVID-19 per 1,000,000 people
    new_cases_smoothed_per_millionNew confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people

    Confirmed deaths

    VariableDescription
    total_deathsTotal deaths attributed to COVID-19
    new_deathsNew deaths attributed to COVID-19
    new_deaths_smoothedNew deaths attributed to COVID-19 (7-day smoothed)
    total_deaths_per_millionTotal deaths attributed to COVID-19 per 1,000,000 people
    new_deaths_per_millionNew deaths attributed to COVID-19 per 1,000,000 people
    new_deaths_smoothed_per_millionNew deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people

    Hospital & ICU

    VariableDescription
    icu_patientsNumber of COVID-19 patients in intensive care units (ICUs) on a given day
    icu_patients_per_millionNumber of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people
    hosp_patientsNumber of COVID-19 patients in hospital on a given day
    hosp_patients_per_millionNumber of COVID-19 patients in hospital on a given day per 1,000,000 people
    weekly_icu_admissionsNumber of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week
    weekly_icu_admissions_per_millionNumber of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people
    weekly_hosp_admissionsNumber of COVID-19 patients newly admitt...
  8. Health Inequalities - Appendix 1 - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2020). Health Inequalities - Appendix 1 - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/health-inequalities-appendix-1
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Unequal impact of COVID-19: BAME disproportionality Further analyses of death registration data and 2011 census data .

  9. Coronavirus (COVID-19) In-depth Dataset

    • kaggle.com
    zip
    Updated May 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pranjal Verma (2021). Coronavirus (COVID-19) In-depth Dataset [Dataset]. https://www.kaggle.com/pranjalverma08/coronavirus-covid19-indepth-dataset
    Explore at:
    zip(9882078 bytes)Available download formats
    Dataset updated
    May 29, 2021
    Authors
    Pranjal Verma
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Covid-19 Data collected from various sources on the internet. This dataset has daily level information on the number of affected cases, deaths, and recovery from the 2019 novel coronavirus. Please note that this is time-series data and so the number of cases on any given day is the cumulative number.

    Content

    The dataset includes 28 files scrapped from various data sources mainly the John Hopkins GitHub repository, the ministry of health affairs India, worldometer, and Our World in Data website. The details of the files are as follows

    • countries-aggregated.csv A simple and cleaned data with 5 columns with self-explanatory names. -covid-19-daily-tests-vs-daily-new-confirmed-cases-per-million.csv A time-series data of daily test conducted v/s daily new confirmed case per million. Entity column represents Country name while code represents ISO code of the country. -covid-contact-tracing.csv Data depicting government policies adopted in case of contact tracing. 0 -> No tracing, 1-> limited tracing, 2-> Comprehensive tracing. -covid-stringency-index.csv The nine metrics used to calculate the Stringency Index are school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls. The index on any given day is calculated as the mean score of the nine metrics, each taking a value between 0 and 100. A higher score indicates a stricter response (i.e. 100 = strictest response). -covid-vaccination-doses-per-capita.csv A total number of vaccination doses administered per 100 people in the total population. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses). -covid-vaccine-willingness-and-people-vaccinated-by-country.csv Survey who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them. -covid_india.csv India specific data containing the total number of active cases, recovered and deaths statewide. -cumulative-deaths-and-cases-covid-19.csv A cumulative data containing death and daily confirmed cases in the world. -current-covid-patients-hospital.csv Time series data containing a count of covid patients hospitalized in a country -daily-tests-per-thousand-people-smoothed-7-day.csv Daily test conducted per 1000 people in a running week average. -face-covering-policies-covid.csv Countries are grouped into five categories: 1->No policy 2->Recommended 3->Required in some specified shared/public spaces outside the home with other people present, or some situations when social distancing not possible 4->Required in all shared/public spaces outside the home with other people present or all situations when social distancing not possible 5->Required outside the home at all times regardless of location or presence of other people -full-list-cumulative-total-tests-per-thousand-map.csv Full list of total tests conducted per 1000 people. -income-support-covid.csv Income support captures if the government is covering the salaries or providing direct cash payments, universal basic income, or similar, of people who lose their jobs or cannot work. 0->No income support, 1->covers less than 50% of lost salary, 2-> covers more than 50% of the lost salary. -internal-movement-covid.csv Showing government policies in restricting internal movements. Ranges from 0 to 2 where 2 represents the strictest. -international-travel-covid.csv Showing government policies in restricting international movements. Ranges from 0 to 2 where 2 represents the strictest. -people-fully-vaccinated-covid.csv Contains the count of fully vaccinated people in different countries. -people-vaccinated-covid.csv Contains the total count of vaccinated people in different countries. -positive-rate-daily-smoothed.csv Contains the positivity rate of various countries in a week running average. -public-gathering-rules-covid.csv Restrictions are given based on the size of public gatherings as follows: 0->No restrictions 1 ->Restrictions on very large gatherings (the limit is above 1000 people) 2 -> gatherings between 100-1000 people 3 -> gatherings between 10-100 people 4 -> gatherings of less than 10 people -school-closures-covid.csv School closure during Covid. -share-people-fully-vaccinated-covid.csv Share of people that are fully vaccinated. -stay-at-home-covid.csv Countries are grouped into four categories: 0->No measures 1->Recommended not to leave the house 2->Required to not leave the house with exceptions for daily exercise, grocery shopping, and ‘essent...
  10. WHO COVID-19 Global Data Insights

    • kaggle.com
    zip
    Updated Sep 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Reza Ghazi Manas (2023). WHO COVID-19 Global Data Insights [Dataset]. https://www.kaggle.com/datasets/mohammadrezagim/who-covid-19-global-data
    Explore at:
    zip(2309669 bytes)Available download formats
    Dataset updated
    Sep 30, 2023
    Authors
    Mohammad Reza Ghazi Manas
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About Dataset: WHO COVID-19 Global Data

    This dataset provides comprehensive information on the global COVID-19 pandemic as reported to the World Health Organization (WHO). The dataset is available in comma-separated values (CSV) format and includes the following fields:

    Daily cases and deaths by date reported to WHO: WHO-COVID-19-global-data.csv

    • Date_reported (Date): The date of reporting to WHO.
    • Country_code (String): The ISO Alpha-2 country code.
    • Country (String): The name of the country, territory, or area.
    • WHO_region (String): The WHO regional office to which the country belongs. WHO Member States are grouped into six WHO regions, including AFRO (Regional Office for Africa), AMRO (Regional Office for the Americas), SEARO (Regional Office for South-East Asia), EURO (Regional Office for Europe), EMRO (Regional Office for the Eastern Mediterranean), and WPRO (Regional Office for the Western Pacific).
    • New_cases (Integer): The number of new confirmed cases reported on a given day. This is calculated by subtracting the previous cumulative case count from the current cumulative case count.
    • Cumulative_cases (Integer): The total cumulative confirmed cases reported to WHO up to the specified date.
    • New_deaths (Integer): The number of new confirmed deaths reported on a given day. Similar to new cases, this is calculated by subtracting the previous cumulative death count from the current cumulative death count.- Cumulative_deaths (Integer): The total cumulative confirmed deaths reported to WHO up to the specified date.

    In addition to the COVID-19 case and death data, this dataset also includes valuable information related to COVID-19 vaccinations. The vaccination data consists of the following fields:

    Vaccination Data Fields: vaccination-data.csv

    • COUNTRY (String): Country, territory, or area.
    • ISO3 (String): ISO Alpha-3 country code.
    • WHO_REGION (String): The WHO regional office to which the country belongs.
    • DATA_SOURCE (String): Indicates the data source, which can be either "REPORTING" (Data reported by Member States or sourced from official reports) or "OWID" (Data sourced from Our World in Data COVID-19 Vaccinations).
    • DATE_UPDATED (Date): Date of the last update.
    • TOTAL_VACCINATIONS (Integer): Cumulative total vaccine doses administered.
    • PERSONS_VACCINATED_1PLUS_DOSE (Decimal): Cumulative number of persons vaccinated with at least one dose.
    • TOTAL_VACCINATIONS_PER100 (Integer): Cumulative total vaccine doses administered per 100 population.
    • PERSONS_VACCINATED_1PLUS_DOSE_PER100 (Decimal): Cumulative persons vaccinated with at least one dose per 100 population.
    • PERSONS_LAST_DOSE (Integer): Cumulative number of persons vaccinated with a complete primary series.
    • PERSONS_LAST_DOSE_PER100 (Decimal): Cumulative number of persons vaccinated with a complete primary series per 100 population.
    • VACCINES_USED (String): Combined short name of the vaccine in the format "Company - Product name."
    • FIRST_VACCINE_DATE (Date): Date of the first vaccinations, equivalent to the start/launch date of the first vaccine administered in a country.
    • NUMBER_VACCINES_TYPES_USED (Integer): Number of vaccine types used per country, territory, or area.
    • PERSONS_BOOSTER_ADD_DOSE (Integer): Cumulative number of persons vaccinated with at least one booster or additional dose.
    • PERSONS_BOOSTER_ADD_DOSE_PER100 (Decimal): Cumulative number of persons vaccinated with at least one booster or additional dose per 100 population.

    In addition to the vaccination data, a separate dataset containing vaccination metadata is available, including information about vaccine names, product names, company names, authorization dates, start and end dates of vaccine rollout, and more.

    Vaccination metadata Fields: vaccination-metadata.csv

    • ISO3 (String): ISO Alpha-3 country code
    • VACCINE_NAME (String): Combined short name of vaccine: "Company - Product name" (see below)
    • PRODUCT_NAME (String): Name or label of vaccine product, or type of vaccine (if unnamed).
    • COMPANY_NAME (String): Marketing authorization holder of vaccine product.
    • FIRST_VACCINE_DATE (Date): Date of first vaccinations. Equivalent to start/launch date of the first vaccine administered in a country.
    • AUTHORIZATION_DATE (Date): Date vaccine product was authorized for use in the country, territory, area.
    • START_DATE (Date): Start/launch date of vaccination with vaccine type (excludes vaccinations during clinical trials).
    • END_DATE (Date): End date of vaccine rollout
    • COMMENT (String): Comments related to vaccine rollout
    • DATA_SOURCE (String): Indicates data source - REPORTING: Data reported by Member States, or sourced from official re...
  11. COVID-19 in Korea dataset

    • kaggle.com
    zip
    Updated Dec 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sean Hong (2020). COVID-19 in Korea dataset [Dataset]. https://www.kaggle.com/hongsean/covid19-in-korea-dataset
    Explore at:
    zip(143063 bytes)Available download formats
    Dataset updated
    Dec 28, 2020
    Authors
    Sean Hong
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    South Korea
    Description

    Context

    • A new coronavirus designated 2019-nCoV was first identified in Wuhan, the capital of China's Hubei province
    • People developed pneumonia without a clear cause and for which existing vaccines or treatments were not effective
    • The virus has shown evidence of human-to-human transmission
    • Korea has defended well against coronavirus until summer, but it increased many confirmed cases from fall
    • As of 24th Dec. approximately 53K cases have been confirmed, and daily around 1K cases are getting confirmed
    • This datasets are prepared to cheer Korea up fighting against coronavirus

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4837224%2Ff829b8bd45aacf4c63b17e0116cb52c9%2Fcover_photo.PNG?generation=1608792447857317&alt=media" alt="">

    Content

    • 3 files attached which are 1) COVID Korea Status 2) COVID Korea Demo 3) COVID Korea Geo

    • 1) COVID Korea Status : General daily update . STATE_DT : standard date . STATE_TIME : standard time . DECIDE_CNT : confirmed cases . CLEAR_CNT : clear cases after hospitalization . EXAM_CNT : examination cases . DEATH_CNT : death counts . CARE_CNT : counts on care . RESUTL_NEG_CNT : negative results after examination . ACC_EXAM_CNT : accumulative examination counts . ACC_EXAM_COMP_CNT: accumulative examination completes count . ACC_DEF_RATE : accumulative confirmed rate . CREATE_DT : posted date and time . UPDATE_DT : updated date and time

    • 2) COVID Korea Demo : Updates with demographic information . GUBUN : classified by gender and age . CONF_CASE : confirmed cases . CONF_CASE_RATE : confirmed case rate . DEATH : death counts . DEATH_RATE : death rate . CRITICAL_RATE : critical rate . CREATE_DT : created date and time . UPDATE_DT : updated date and time

    • 3) COVID Korea Geo : Updates with geographic information
      . CREATE_DT : created date and time
      . DEATH_CNT : death counts
      . GUBUN : city name
      . GUBUN_CN : city name in Chinese
      . GUBUN_EN : city name in English
      . INC_DEC : increase/decrease vs. past day
      . ISOL_CLEAR_CNT : clear counts from isolation
      . QUR_RATE : confirmed rate per 100K people
      . STD_DAY : standard day
      . UPDATE_DT : updated date and time
      . DEF_CNT : confirmed cases
      . ISOL_ING_CNT : isolated cases
      . OVER_FLOW_CNT : confirmed cases from foreign countries
      . LOCAL_OCC_CNT : domestic confirmed cases

    Acknowledgements

    If these are useful, I will frequently update. Thanks.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). COVID-19 Global Case and Death Data [Dataset]. https://www.kaggle.com/datasets/thedevastator/covid-19-global-case-and-death-data
Organization logo

COVID-19 Global Case and Death Data

Global COVID-19 Cases and Deaths Over Time

Explore at:
zip(81724234 bytes)Available download formats
Dataset updated
Dec 4, 2023
Authors
The Devastator
Description

COVID-19 Global Case and Death Data

Global COVID-19 Cases and Deaths Over Time

By Coronavirus (COVID-19) Data Hub [source]

About this dataset

The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.

The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.

Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.

Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.

To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.

It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.

Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic

How to use the dataset

  • Understanding the Dataset Structure:

    • The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
    • Both files contain different columns that provide information about the COVID-19 cases and deaths.
    • Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
  • Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.

  • Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.

  • Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.

  • Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.

  • Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.

  • Comparing Countries/Regions: Compare COVID-19

Research Ideas

  • Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
Search
Clear search
Close search
Google apps
Main menu