Facebook
TwitterBy Coronavirus (COVID-19) Data Hub [source]
The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.
The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.
Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.
Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.
To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.
It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.
Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic
Understanding the Dataset Structure:
- The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
- Both files contain different columns that provide information about the COVID-19 cases and deaths.
- Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.
Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.
Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.
Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.
Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.
Comparing Countries/Regions: Compare COVID-19
- Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...
Facebook
TwitterThis mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Daily official UK Covid data. The data is available per country (England, Scotland, Wales and Northern Ireland) and for different regions in England. The different regions are split into two different files as part of the data is directly gathered by the NHS (National Health Service). The files that contain the word 'nhsregion' in their name, include data related to hospitals only, such as number of admissions or number of people in respirators. The files containing the word 'region' in their name, include the rest of the data, such as number of cases, number of vaccinated people or number of tests performed per day. The next paragraphs describe the columns for the different file types.
Files related to regions (word 'region' included in the file name) have the following columns: - "date": date in YYYY-MM-DD format - "area type": type of area covered in the file (region or nation) - "area name": name of area covered in the file (region or nation name) - "daily cases": new cases on a given date - "cum cases": cumulative cases - "new deaths 28days": new deaths within 28 days of a positive test - "cum deaths 28days": cumulative deaths within 28 days of a positive test - "new deaths_60days": new deaths within 60 days of a positive test - "cum deaths 60days": cumulative deaths within 60 days of a positive test - "new_first_episode": new first episodes by date - "cum_first_episode": cumulative first episodes by date - "new_reinfections": new reinfections by specimen data - "cum_reinfections": cumualtive reinfections by specimen data - "new_virus_test": new virus tests by date - "cum_virus_test": cumulative virus tests by date - "new_pcr_test": new PCR tests by date - "cum_pcr_test": cumulative PCR tests by date - "new_lfd_test": new LFD tests by date - "cum_lfd_test": cumulative LFD tests by date - "test_roll_pos_pct": percentage of unique case positivity by date rolling sum - "test_roll_people": unique people tested by date rolling sum - "new first dose": new people vaccinated with a first dose - "cum first dose": cumulative people vaccinated with a first dose - "new second dose": new people vaccinated with a first dose - "cum second dose": cumulative people vaccinated with a first dose - "new third dose": new people vaccinated with a booster or third dose - "cum third dose": cumulative people vaccinated with a booster or third dose
Files related to countries (England, Northern Ireland, Scotland and Wales) have the above columns and also: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
Files related to nhsregion (word 'nhsregion' included in the file name) have the following columns: - "new admissions": new admissions, - "cum admissions": cumulative admissions, - "hospital cases": patients in hospitals, - "ventilator beds": COVID occupied mechanical ventilator beds - "trans_rate_min": minimum transmission rate (R) - "trans_rate_max": maximum transmission rate (R) - "trans_growth_min": transmission rate growth min - "trans_growth_max": transmission rate growth max
It's worth noting that the dataset hasn't been cleaned and it needs cleaning. Also, different files have different null columns. This isn't an error in the dataset but the way different countries and regions report the data.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases for the US and Canada. Data sources: WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by the Esri Living Atlas team and JHU Data Services. This layer is opened to the public and free to share. Contact Johns Hopkins.IMPORTANT NOTICE: 1. Fields for Active Cases and Recovered Cases are set to 0 in all locations. John Hopkins has not found a reliable source for this information at the county level but will continue to look and carry the fields.2. Fields for Incident Rate and People Tested are placeholders for when this becomes available at the county level.3. In some instances, cases have not been assigned a location at the county scale. those are still assigned a state but are listed as unassigned and given a Lat Long of 0,0.Data Field Descriptions by Alias Name:Province/State: (Text) Country Province or State Name (Level 2 Key)Country/Region: (Text) Country or Region Name (Level 1 Key)Last Update: (Datetime) Last data update Date/Time in UTCLatitude: (Float) Geographic Latitude in Decimal Degrees (WGS1984)Longitude: (Float) Geographic Longitude in Decimal Degrees (WGS1984)Confirmed: (Long) Best collected count of Confirmed Cases reported by geographyRecovered: (Long) Not Currently in Use, JHU is looking for a sourceDeaths: (Long) Best collected count for Case Deaths reported by geographyActive: (Long) Confirmed - Recovered - Deaths (computed) Not Currently in Use due to lack of Recovered dataCounty: (Text) US County Name (Level 3 Key)FIPS: (Text) US State/County CodesCombined Key: (Text) Comma separated concatenation of Key Field values (L3, L2, L1)Incident Rate: (Long) People Tested: (Long) Not Currently in Use Placeholder for additional dataPeople Hospitalized: (Long) Not Currently in Use Placeholder for additional data
Facebook
TwitterAs of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Our complete COVID-19 dataset is a collection of the COVID-19 data. We will update it daily throughout the duration of the COVID-19 pandemic. It includes the following data:
| Metrics | Source | Updated | Countries |
|---|---|---|---|
| Vaccinations | Official data collated by the Our World in Data team | Daily | 217 |
| Tests & positivity | Official data collated by the Our World in Data team | Weekly | 136 |
| Hospital & ICU | Official data collated by the Our World in Data team | Weekly | 35 |
| Confirmed cases | JHU CSSE COVID-19 Data | Daily | 194 |
| Confirmed deaths | JHU CSSE COVID-19 Data | Daily | 194 |
| Reproduction rate | Arroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno C | Daily | 185 |
| Policy responses | Oxford COVID-19 Government Response Tracker | Daily | 186 |
| Other variables of interest | International organizations (UN, World Bank, OECD, IHME…) | Fixed | 240 |
The CSV and files follow a format of 1 row per location and date. This version is split by country ISO code, with static variables and an array of daily records.
The variables represent all of our main data related to confirmed cases, deaths, hospitalizations, and testing, as well as other variables of potential interest.
| Variable | Description |
|---|---|
total_cases | Total confirmed cases of COVID-19 |
new_cases | New confirmed cases of COVID-19 |
new_cases_smoothed | New confirmed cases of COVID-19 (7-day smoothed) |
total_cases_per_million | Total confirmed cases of COVID-19 per 1,000,000 people |
new_cases_per_million | New confirmed cases of COVID-19 per 1,000,000 people |
new_cases_smoothed_per_million | New confirmed cases of COVID-19 (7-day smoothed) per 1,000,000 people |
| Variable | Description |
|---|---|
total_deaths | Total deaths attributed to COVID-19 |
new_deaths | New deaths attributed to COVID-19 |
new_deaths_smoothed | New deaths attributed to COVID-19 (7-day smoothed) |
total_deaths_per_million | Total deaths attributed to COVID-19 per 1,000,000 people |
new_deaths_per_million | New deaths attributed to COVID-19 per 1,000,000 people |
new_deaths_smoothed_per_million | New deaths attributed to COVID-19 (7-day smoothed) per 1,000,000 people |
| Variable | Description |
|---|---|
icu_patients | Number of COVID-19 patients in intensive care units (ICUs) on a given day |
icu_patients_per_million | Number of COVID-19 patients in intensive care units (ICUs) on a given day per 1,000,000 people |
hosp_patients | Number of COVID-19 patients in hospital on a given day |
hosp_patients_per_million | Number of COVID-19 patients in hospital on a given day per 1,000,000 people |
weekly_icu_admissions | Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week |
weekly_icu_admissions_per_million | Number of COVID-19 patients newly admitted to intensive care units (ICUs) in a given week per 1,000,000 people |
weekly_hosp_admissions | Number of COVID-19 patients newly admitt... |
Facebook
TwitterUnequal impact of COVID-19: BAME disproportionality Further analyses of death registration data and 2011 census data .
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Covid-19 Data collected from various sources on the internet. This dataset has daily level information on the number of affected cases, deaths, and recovery from the 2019 novel coronavirus. Please note that this is time-series data and so the number of cases on any given day is the cumulative number.
The dataset includes 28 files scrapped from various data sources mainly the John Hopkins GitHub repository, the ministry of health affairs India, worldometer, and Our World in Data website. The details of the files are as follows
countries-aggregated.csv
A simple and cleaned data with 5 columns with self-explanatory names.
-covid-19-daily-tests-vs-daily-new-confirmed-cases-per-million.csv
A time-series data of daily test conducted v/s daily new confirmed case per million. Entity column represents Country name while code represents ISO code of the country.
-covid-contact-tracing.csv
Data depicting government policies adopted in case of contact tracing. 0 -> No tracing, 1-> limited tracing, 2-> Comprehensive tracing.
-covid-stringency-index.csv
The nine metrics used to calculate the Stringency Index are school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls. The index on any given day is calculated as the mean score of the nine metrics, each taking a value between 0 and 100. A higher score indicates a stricter response (i.e. 100 = strictest response).
-covid-vaccination-doses-per-capita.csv
A total number of vaccination doses administered per 100 people in the total population. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses).
-covid-vaccine-willingness-and-people-vaccinated-by-country.csv
Survey who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them.
-covid_india.csv
India specific data containing the total number of active cases, recovered and deaths statewide.
-cumulative-deaths-and-cases-covid-19.csv
A cumulative data containing death and daily confirmed cases in the world.
-current-covid-patients-hospital.csv
Time series data containing a count of covid patients hospitalized in a country
-daily-tests-per-thousand-people-smoothed-7-day.csv
Daily test conducted per 1000 people in a running week average.
-face-covering-policies-covid.csv
Countries are grouped into five categories:
1->No policy
2->Recommended
3->Required in some specified shared/public spaces outside the home with other people present, or some situations when social distancing not possible
4->Required in all shared/public spaces outside the home with other people present or all situations when social distancing not possible
5->Required outside the home at all times regardless of location or presence of other people
-full-list-cumulative-total-tests-per-thousand-map.csv
Full list of total tests conducted per 1000 people.
-income-support-covid.csv
Income support captures if the government is covering the salaries or providing direct cash payments, universal basic income, or similar, of people who lose their jobs or cannot work. 0->No income support, 1->covers less than 50% of lost salary, 2-> covers more than 50% of the lost salary.
-internal-movement-covid.csv
Showing government policies in restricting internal movements. Ranges from 0 to 2 where 2 represents the strictest.
-international-travel-covid.csv
Showing government policies in restricting international movements. Ranges from 0 to 2 where 2 represents the strictest.
-people-fully-vaccinated-covid.csv
Contains the count of fully vaccinated people in different countries.
-people-vaccinated-covid.csv
Contains the total count of vaccinated people in different countries.
-positive-rate-daily-smoothed.csv
Contains the positivity rate of various countries in a week running average.
-public-gathering-rules-covid.csv
Restrictions are given based on the size of public gatherings as follows:
0->No restrictions
1 ->Restrictions on very large gatherings (the limit is above 1000 people)
2 -> gatherings between 100-1000 people
3 -> gatherings between 10-100 people
4 -> gatherings of less than 10 people
-school-closures-covid.csv
School closure during Covid.
-share-people-fully-vaccinated-covid.csv
Share of people that are fully vaccinated.
-stay-at-home-covid.csv
Countries are grouped into four categories:
0->No measures
1->Recommended not to leave the house
2->Required to not leave the house with exceptions for daily exercise, grocery shopping, and ‘essent...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About Dataset: WHO COVID-19 Global Data
This dataset provides comprehensive information on the global COVID-19 pandemic as reported to the World Health Organization (WHO). The dataset is available in comma-separated values (CSV) format and includes the following fields:
Daily cases and deaths by date reported to WHO: WHO-COVID-19-global-data.csv
In addition to the COVID-19 case and death data, this dataset also includes valuable information related to COVID-19 vaccinations. The vaccination data consists of the following fields:
Vaccination Data Fields: vaccination-data.csv
In addition to the vaccination data, a separate dataset containing vaccination metadata is available, including information about vaccine names, product names, company names, authorization dates, start and end dates of vaccine rollout, and more.
Vaccination metadata Fields: vaccination-metadata.csv
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4837224%2Ff829b8bd45aacf4c63b17e0116cb52c9%2Fcover_photo.PNG?generation=1608792447857317&alt=media" alt="">
3 files attached which are 1) COVID Korea Status 2) COVID Korea Demo 3) COVID Korea Geo
1) COVID Korea Status : General daily update . STATE_DT : standard date . STATE_TIME : standard time . DECIDE_CNT : confirmed cases . CLEAR_CNT : clear cases after hospitalization . EXAM_CNT : examination cases . DEATH_CNT : death counts . CARE_CNT : counts on care . RESUTL_NEG_CNT : negative results after examination . ACC_EXAM_CNT : accumulative examination counts . ACC_EXAM_COMP_CNT: accumulative examination completes count . ACC_DEF_RATE : accumulative confirmed rate . CREATE_DT : posted date and time . UPDATE_DT : updated date and time
2) COVID Korea Demo : Updates with demographic information . GUBUN : classified by gender and age . CONF_CASE : confirmed cases . CONF_CASE_RATE : confirmed case rate . DEATH : death counts . DEATH_RATE : death rate . CRITICAL_RATE : critical rate . CREATE_DT : created date and time . UPDATE_DT : updated date and time
3) COVID Korea Geo : Updates with geographic information
. CREATE_DT : created date and time
. DEATH_CNT : death counts
. GUBUN : city name
. GUBUN_CN : city name in Chinese
. GUBUN_EN : city name in English
. INC_DEC : increase/decrease vs. past day
. ISOL_CLEAR_CNT : clear counts from isolation
. QUR_RATE : confirmed rate per 100K people
. STD_DAY : standard day
. UPDATE_DT : updated date and time
. DEF_CNT : confirmed cases
. ISOL_ING_CNT : isolated cases
. OVER_FLOW_CNT : confirmed cases from foreign countries
. LOCAL_OCC_CNT : domestic confirmed cases
If these are useful, I will frequently update. Thanks.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterBy Coronavirus (COVID-19) Data Hub [source]
The COVID-19 Global Time Series Case and Death Data is a comprehensive collection of global COVID-19 case and death information recorded over time. This dataset includes data from various sources such as JHU CSSE COVID-19 Data and The New York Times.
The dataset consists of several columns providing detailed information on different aspects of the COVID-19 situation. The COUNTRY_SHORT_NAME column represents the short name of the country where the data is recorded, while the Data_Source column indicates the source from which the data was obtained.
Other important columns include Cases, which denotes the number of COVID-19 cases reported, and Difference, which indicates the difference in case numbers compared to the previous day. Additionally, there are columns such as CONTINENT_NAME, DATA_SOURCE_NAME, COUNTRY_ALPHA_3_CODE, COUNTRY_ALPHA_2_CODE that provide additional details about countries and continents.
Furthermore, this dataset also includes information on deaths related to COVID-19. The column PEOPLE_DEATH_NEW_COUNT shows the number of new deaths reported on a specific date.
To provide more context to the data, certain columns offer demographic details about locations. For instance, Population_Count provides population counts for different areas. Moreover,**FIPS** code is available for provincial/state regions for identification purposes.
It is important to note that this dataset covers both confirmed cases (Case_Type: confirmed) as well as probable cases (Case_Type: probable). These classifications help differentiate between various types of COVID-19 infections.
Overall, this dataset offers a comprehensive picture of global COVID-19 situations by providing accurate and up-to-date information on cases, deaths, demographic details like population count or FIPS code), source references (such as JHU CSSE or NY Times), geographical information (country names coded with ALPHA codes) , etcetera making it useful for researchers studying patterns and trends associated with this pandemic
Understanding the Dataset Structure:
- The dataset is available in two files: COVID-19 Activity.csv and COVID-19 Cases.csv.
- Both files contain different columns that provide information about the COVID-19 cases and deaths.
- Some important columns to look out for are: a. PEOPLE_POSITIVE_CASES_COUNT: The total number of confirmed positive COVID-19 cases. b. COUNTY_NAME: The name of the county where the data is recorded. c. PROVINCE_STATE_NAME: The name of the province or state where the data is recorded. d. REPORT_DATE: The date when the data was reported. e. CONTINENT_NAME: The name of the continent where the data is recorded. f. DATA_SOURCE_NAME: The name of the data source. g. PEOPLE_DEATH_NEW_COUNT: The number of new deaths reported on a specific date. h.COUNTRY_ALPHA_3_CODE :The three-letter alpha code represents country f.Lat,Long :latitude and longitude coordinates represent location i.Country_Region or COUNTRY_SHORT_NAME:The country or region where cases were reported.
Choosing Relevant Columns: It's important to determine which columns are relevant to your analysis or research question before proceeding with further analysis.
Exploring Data Patterns: Use various statistical techniques like summarizing statistics, creating visualizations (e.g., bar charts, line graphs), etc., to explore patterns in different variables over time or across regions/countries.
Filtering Data: You can filter your dataset based on specific criteria using column(s) such as COUNTRY_SHORT_NAME, CONTINENT_NAME, or PROVINCE_STATE_NAME to focus on specific countries, continents, or regions of interest.
Combining Data: You can combine data from different sources (e.g., COVID-19 cases and deaths) to perform advanced analysis or create insightful visualizations.
Analyzing Trends: Use the dataset to analyze and identify trends in COVID-19 cases and deaths over time. You can examine factors such as population count, testing count, hospitalization count, etc., to gain deeper insights into the impact of the virus.
Comparing Countries/Regions: Compare COVID-19
- Trend Analysis: This dataset can be used to analyze and track the trends of COVID-19 cases and deaths over time. It provides comprehensive global data, allowing researchers and po...