21 datasets found
  1. e

    Bangladesh - Population density - Dataset - ENERGYDATA.INFO

    • energydata.info
    Updated Sep 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Bangladesh - Population density - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/bangladesh--population-density-2015
    Explore at:
    Dataset updated
    Sep 23, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

  2. Population density of Bangladesh 2005-2020

    • statista.com
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density of Bangladesh 2005-2020 [Dataset]. https://www.statista.com/statistics/778381/bangladesh-population-density/
    Explore at:
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Bangladesh
    Description

    The population density in Bangladesh reached its highest in 2020, amounting to approximately 1.27 thousand people per square kilometer. The South Asian country was the tenth most densely populated country in the world in 2019. Within the Asia Pacific region, Bangladesh’s population density was only exceeded by Macao, Singapore, Hong Kong, and the Maldives. Overall, Asia had the highest population density in the world in 2018.

    Population growth in Bangladesh

    In 1971, Bangladesh gained its independence from Pakistan. Bangladesh’s birth rate and mortality rate had declined significantly in the past years with a life expectancy of 72.59 years in 2019. In general, the population in Bangladesh had been growing at a slow pace, slightly fluctuating around an annual rate of one percent. This growth was forecasted to continue, although it was estimated to halve by 2040. As of today, Dhaka is the largest city in Bangladesh.

    Population density explained

    According to the source, “population density is the mid-year population divided by land area in square kilometers.” Further, “population is based on the de facto definition of population, which counts all residents.” Bangladesh’s population reached an estimated number of 164.69 million inhabitants in 2020. In 2018, the country’s land area amounted 130.2 thousand square kilometers.

  3. H

    Bangladesh - Population Density

    • data.humdata.org
    geotiff
    Updated Mar 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WorldPop (2025). Bangladesh - Population Density [Dataset]. https://data.humdata.org/dataset/worldpop-population-density-for-bangladesh
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    WorldPop
    Area covered
    Bangladesh
    Description

    WorldPop produces different types of gridded population count datasets, depending on the methods used and end application. Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.

    Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)

    -Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area. These are produced using the unconstrained top-down modelling method.
    -Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel, adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area. These are produced using the unconstrained top-down modelling method.

    Data for earlier dates is available directly from WorldPop.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674

  4. w

    Bangladesh - Population density (2015)

    • data.wu.ac.at
    tiff
    Updated Aug 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Bangladesh - Population density (2015) [Dataset]. https://data.wu.ac.at/schema/africaopendata_org/YmEzNzQzN2MtZWU2MC00ODc5LWE1OTEtZGEyNjFhMzU3MjEz
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Aug 11, 2017
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.

    DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.

    REGION: Africa

    SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)

    PROJECTION: Geographic, WGS84

    UNITS: Estimated persons per grid square

    MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.

    FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)

    FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

    Bangladesh data available from WorldPop here.

  5. H

    Bangladesh: High Resolution Population Density Maps + Demographic Estimates

    • data.humdata.org
    json, zip
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data for Good at Meta (2025). Bangladesh: High Resolution Population Density Maps + Demographic Estimates [Dataset]. https://data.humdata.org/dataset/bangladesh-high-resolution-population-density-maps-demographic-estimates
    Explore at:
    json(1938110), zip(29948081), zip(70592341), zip(29920507), zip(29945642), zip(71035060), zip(29909097), zip(29952336), zip(70616528), zip(29903716), zip(70783810), zip(71572257), zip(29905911), zip(70615811), zip(71356514)Available download formats
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    Data for Good at Meta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    VERSION 1.5. The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Bangladesh : (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).

  6. Population growth in Bangladesh 2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population growth in Bangladesh 2023 [Dataset]. https://www.statista.com/statistics/268715/population-growth-in-bangladesh-1990-2008/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Bangladesh
    Description

    The annual population growth in Bangladesh decreased by 0.04 percentage points (-3.74 percent) compared to the previous year. In 2023, the population growth thereby reached its lowest value in recent years. Population growth deals with the annual change in total population, and is affected by factors such as fertility, mortality, and migration.Find more key insights for the annual population growth in countries like Bhutan and India.

  7. H

    Bangladesh: Administrative Division with Aggregated Population

    • data.humdata.org
    geopackage
    Updated Jul 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kontur (2023). Bangladesh: Administrative Division with Aggregated Population [Dataset]. https://data.humdata.org/dataset/kontur-boundaries-bangladesh
    Explore at:
    geopackageAvailable download formats
    Dataset updated
    Jul 28, 2023
    Dataset provided by
    Kontur
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    Bangladesh administrative division with aggregated population. Built from Kontur Population: Global Population Density for 400m H3 Hexagons on top of OpenStreetMap administrative boundaries data. Enriched with HASC codes for regions taken from Wikidata.
    Global version of boundaries dataset: Kontur Boundaries: Global administrative division with aggregated population

  8. f

    Dairy Processing Location Score: Goat (Bangladesh - ~ 500 m)

    • data.apps.fao.org
    Updated Jul 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Dairy Processing Location Score: Goat (Bangladesh - ~ 500 m) [Dataset]. https://data.apps.fao.org/map/catalog/srv/resources/datasets/7fa6d600-1d00-48fb-b316-5899d7824786
    Explore at:
    Dataset updated
    Jul 20, 2024
    Area covered
    Bangladesh
    Description

    The raster dataset consists of a 500 m score grid for dairy processing industry facilities siting, produced under the scope of FAO’s Hand-in-Hand Initiative, Geographical Information Systems - Multicriteria Decision Analysis for value chain infrastructure location. The analysis is based on sheep dairy production intensification potential, defined using crop production, livestock production systems, and goat distribution. The score is achieved by processing sub-model outputs that characterize logistical factors: 1. Supply - Feed, livestock production systems, dairy distribution. 2. Demand - Human population density, large cities, urban areas. 3. Infrastructure - Transportation network (accessibility) It consists of an arithmetic weighted sum of normalized grids (0 to 100): (”Dairy Intensification” * 0.4) + ("Crop Production" * 0.3) + (“Major Cities Accessibility” * 0.2) + (“Population Density” * 0.1)

  9. d

    Geographical Distribution of Biomass Carbon in Tropical Southeast Asian...

    • search.dataone.org
    Updated Nov 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brown, Sandra; Iverson, Louis R.; Prasad, Anantha (2014). Geographical Distribution of Biomass Carbon in Tropical Southeast Asian Forests (NDP-068) [Dataset]. https://search.dataone.org/view/Geographical_Distribution_of_Biomass_Carbon_in_Tropical_Southeast_Asian_Forests_%28NDP-068%29.xml
    Explore at:
    Dataset updated
    Nov 17, 2014
    Dataset provided by
    Regional and Global Biogeochemical Dynamics Data (RGD)
    Authors
    Brown, Sandra; Iverson, Louis R.; Prasad, Anantha
    Time period covered
    Jan 1, 1980 - Dec 31, 1980
    Area covered
    Description

    A database (NDP-068) was generated from estimates of geographically referenced carbon densities of forest vegetation in tropical Southeast Asia for 1980. A geographic information system (GIS) was used to incorporate spatial databases of climatic, edaphic, and geomorphological indices and vegetation to estimate potential (i.e., in the absence of human intervention and natural disturbance) carbon densities of forests. The resulting map was then modified to estimate actual 1980 carbon density as a function of population density and climatic zone. The database covers the following 13 countries: Bangladesh, Brunei, Cambodia (Campuchea), India, Indonesia, Laos, Malaysia, Myanmar (Burma), Nepal, the Philippines, Sri Lanka, Thailand, and Vietnam.

    The data sets within this database are provided in three file formats: ARC/INFOTM exported integer grids; ASCII (American Standard Code for Information Interchange) files formatted for raster-based GIS software packages; and generic ASCII files with x, y coordinates for use with non-GIS software packages.

    The database includes ten ARC/INFO exported integer grid files (five with the pixel size 3.75 km x 3.75 km and five with the pixel size 0.25 degree longitude x 0.25 degree latitude) and 27 ASCII files. The first ASCII file contains the documentation associated with this database. Twenty-four of the ASCII files were generated by means of the ARC/INFO GRIDASCII command and can be used by most raster-based GIS software packages. The 24 files can be subdivided into two groups of 12 files each.

    The files contain real data values representing actual carbon and potential carbon density in Mg C/ha (1 megagram = 10^6 grams) and integer-coded values for country name, Weck's Climatic Index, ecofloristic zone, elevation, forest or non- forest designation, population density, mean annual precipitation, slope, soil texture, and vegetation classification. One set of 12 files contains these data at a spatial resolution of 3.75 km, whereas the other set of 12 files has a spatial resolution of 0.25 degree. The remaining two ASCII data files combine all of the data from the 24 ASCII data files into 2 single generic data files. The first file has a spatial resolution of 3.75 km, and the second has a resolution of 0.25 degree. Both files also provide a grid-cell identification number and the longitude and latitude of the centerpoint of each grid cell.

    The 3.75-km data in this numeric data package yield an actual total carbon estimate of 42.1 Pg (1 petagram = 10^15 grams) and a potential carbon estimate of 73.6 Pg; whereas the 0.25-degree data produced an actual total carbon estimate of 41.8 Pg and a total potential carbon estimate of 73.9 Pg.

    Fortran and SASTM access codes are provided to read the ASCII data files, and ARC/INFO and ARCVIEW command syntax are provided to import the ARC/INFO exported integer grid files. The data files and this documentation are available without charge on a variety of media and via the Internet from the Carbon Dioxide Information Analysis Center (CDIAC).

  10. H

    Bangladesh Floods - August 2017 - Flooding levels & Vulnerability

    • data.humdata.org
    • data.amerigeoss.org
    csv, pdf, shp
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Netherlands Red Cross - 510 (2024). Bangladesh Floods - August 2017 - Flooding levels & Vulnerability [Dataset]. https://data.humdata.org/dataset/bangladesh-floods-august-2017-vulnerability-population-density
    Explore at:
    pdf(3296025), shp(1805319), csv(18683)Available download formats
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Netherlands Red Cross - 510
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    In this analysis we have combined several data sources around the floods in Bangladesh in August 2017.

    Visualization

    • See attached map for a map visualization of this analysis.
    • See http://bit.ly/2uFezkY for a more interactive visualization in Carto.

    Situation

    Currently, in Bangladesh many water level measuring stations measure water levels that are above danger levels. This sets in triggers in motion for the partnership of the 510 Data Intitiative and the Red Cross Climate Centre to get into action.

    Indicators and sources

    In the attached map, we combined several sources:

    Detailed methodology Vulnerability

    • The above-mentioned poverty source file is on a raster level. This raster level poverty was transformed to admin-4 level geographic areas (source: https://data.humdata.org/dataset/bangladesh-admin-level-4-boundaries), by taking a population-weighted average. (Source population also Worldpop).
    • The district-level PCA components from abovementioned reports were matched to the geodata based on district names, and thus joined to the admin-4 level areas, which now contain a poverty value as well as Deprivation Index value. Note that all admin-4 areas within one district (admin-2) obviously all have the same value. The poverty rates do differ between all admin-4 areas.
    • Lastly, both variables were transformed to a 0-10 score (linearly), and a geomean was taken to calculate the final index of the two. A geomean (as opposed to an arithmetic mean) is often used in calculating composite risk indices, for example in the widely used INFORM-framework (www.inform-index.org).
  11. 孟加拉国 人口密度:每平方公里的居民

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, 孟加拉国 人口密度:每平方公里的居民 [Dataset]. https://www.ceicdata.com/zh-hans/bangladesh/social-demography-non-oecd-member-annual/bd-population-density-inhabitants-per-sq-km
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2011 - Dec 1, 2022
    Area covered
    孟加拉国
    Description

    人口密度:每平方公里的居民在12-01-2022达1,301.260人,相较于12-01-2021的1,288.000人有所增长。人口密度:每平方公里的居民数据按年更新,12-01-1990至12-01-2022期间平均值为1,124.730人,共33份观测结果。该数据的历史最高值出现于12-01-2022,达1,301.260人,而历史最低值则出现于12-01-1990,为857.600人。CEIC提供的人口密度:每平方公里的居民数据处于定期更新的状态,数据来源于Organisation for Economic Co-operation and Development,数据归类于全球数据库的孟加拉 – Table BD.OECD.GGI: Social: Demography: Non OECD Member: Annual。

  12. f

    Crop Storage Location Score: Vegetables (Bangladesh - ~ 500m)

    • data.apps.fao.org
    Updated Jul 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Crop Storage Location Score: Vegetables (Bangladesh - ~ 500m) [Dataset]. https://data.apps.fao.org/map/catalog/srv/resources/datasets/c9ff5c5e-7237-4307-b239-412ee2eaea6c
    Explore at:
    Dataset updated
    Jul 15, 2024
    Area covered
    Bangladesh
    Description

    The raster dataset consists of a 500m score grid for vegetables storage location, produced under the scope of FAO’s Hand-in-Hand Initiative, Geographical Information Systems - Multicriteria Decision Analysis for value chain infrastructure location. The location score is achieved by processing sub-model outputs that characterize logistical factors for selected crop warehouse locations: • Supply: Crop. • Demand: Human population density, Major cities population (national and bordering countries). • Infrastructure/accessibility: main transportation infrastructure. It consists of an arithmetic weighted sum of normalized grids (0 to 100): ("Crop Production" * 0.4) + ("Human Population Density" * 0.2) + (“Major Cities Accessibility” * 0.1) + (”Regional Cities Accessibility” *0.1 ) + (”Port Accessibility” *0. 2)

  13. d

    Data from: Bats of Bangladesh — A systematic review of the diversity and...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Nov 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Ashraf Ul Hasan; Tigga Kingston (2022). Bats of Bangladesh — A systematic review of the diversity and distribution with recommendations for future research [Dataset]. http://doi.org/10.5061/dryad.5tb2rbp7j
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 23, 2022
    Dataset provided by
    Dryad
    Authors
    Md Ashraf Ul Hasan; Tigga Kingston
    Time period covered
    2022
    Description

    Bangladesh is a South Asian country located at the crossroads of the Indochina and Indo-Himalayan subregions, making it a country of rich faunal diversity. Bangladesh's high population density paired with rapid habitat alteration leaving only 6% of its natural habitats threatens its faunal diversity. Over 1,455 bat species live on earth, providing immense ecological services to maintain biodiversity. The paucity of bat research in Bangladesh and the lack of comprehensive work has led us to set the goal of checking how many species are present in Bangladesh, and the possibility of bat species yet to have occurred. Here we compiled species occurrence data on the bats of Bangladesh and states in neighboring countries (India – states are West Bengal, Sikkim, Meghalaya, Assam, Tripura, Mizoram; Myanmar – states are Chin, Rakhine) from the museums (American Museum of Natural History, Smithsonian National Museum of Natural History, Natural History Museum at United Kingdom, Field Museum of Natu...

  14. f

    Crop Storage Location Score: Rice (Bangladesh - ~ 500m)

    • data.apps.fao.org
    Updated Mar 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Crop Storage Location Score: Rice (Bangladesh - ~ 500m) [Dataset]. https://data.apps.fao.org/map/catalog/srv/resources/datasets/3c3999ca-a56c-4d65-b536-1d4cede89041
    Explore at:
    Dataset updated
    Mar 2, 2024
    Area covered
    Bangladesh
    Description

    The raster dataset consists of a 500m score grid for rice storage location, produced under the scope of FAO’s Hand-in-Hand Initiative, Geographical Information Systems - Multicriteria Decision Analysis for value chain infrastructure location. The location score is achieved by processing sub-model outputs that characterize logistical factors for selected crop warehouse locations: • Supply: Crop. • Demand: Human population density, Major cities population (national and bordering countries). • Infrastructure/accessibility: main transportation infrastructure. It consists of an arithmetic weighted sum of normalized grids (0 to 100): ("Crop Production" * 0.4) + ("Human Population Density" * 0.2) + (“Major Cities Accessibility” * 0.1) + (”Regional Cities Accessibility” *0.1 ) + (”Port Accessibility” *0. 2)

  15. Dairy Processing Final Location: Goat (Bangladesh - ~ 500 m)

    • data.amerigeoss.org
    • data.apps.fao.org
    png, wms, zip
    Updated May 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Dairy Processing Final Location: Goat (Bangladesh - ~ 500 m) [Dataset]. https://data.amerigeoss.org/tl/dataset/0e833cd5-029e-449a-868f-b57264a5f795
    Explore at:
    png, wms, zipAvailable download formats
    Dataset updated
    May 28, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    The 500 m raster dataset represents selected top location score areas filtered by exclusive criteria: access to finance, distance to major roads, access to IT, and distance to urban areas. The layer was produced under the scope of FAO’s Hand-in-Hand Initiative, Geographical Information Systems - Multicriteria Decision Analysis for value chain infrastructure location.

    The location score is achieved by processing sub-model outputs characterizing logistical factors dairy processing facilities siting: Supply, demand, Infrastructure/accessibility. The top score is selected/clipped using the exclusive criteria.

    Access to finance, distance to roads, and urban areas are defined using a linear distance threshold: • Banks - approx. 10km buffer radius. • Major roads - approx. 2km buffer radius. Access to IT is characterized by applying the mobile broadband coverage map.

    Data publication: 2021-10-15

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Justeen De Ocampo

    Data lineage:

    Major data sources, FAO GIS platform Hand-in-Hand and OpenStreetMap (open data) including the following datasets: 1. Human Population Density 2020 – WorldPop2020 - Estimated total number of people per grid-cell 1km. 2. Mapspam Production – IFPRI's Spatial Production Allocation Model (SPAM) estimates of crop distribution within disaggregated units. 3. GLW Gridded Livestock of the World - Gridded Livestock of the World (GLW 3 and GLW 2) 4. Global Livestock Production Systems v.5 2011. 5. OpenStreetMap. 6. Mobile Broadband Coverage produced based on: Coverage Data © Collins Bartholomew and GSMA 2020.

    Resource constraints:

    Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO (CC BY-NC- SA 3.0 IGO)

    Online resources:

    Zipped raster TIF file for dairy processing (UHT/powder) final location (Bangladesh - ~ 500m)

  16. f

    Raw data supporting the findings of this study.

    • plos.figshare.com
    csv
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sefat - E- Barket; Md. Rezaul Karim; Md. Sifat Ar Salan (2025). Raw data supporting the findings of this study. [Dataset]. http://doi.org/10.1371/journal.pone.0316621.s001
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Sefat - E- Barket; Md. Rezaul Karim; Md. Sifat Ar Salan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background COVID-19 is a highly transmittable respiratory illness induced by SARS-CoV-2, a novel coronavirus. The spatio-temporal analysis considers interactions between space and time is essential for understanding the virus’s transmission pattern and developing efficient mitigation strategies. Objective This study explicitly examines how meteorological, demographic, and vaccination with all doses of risk factors are interrelated with COVID-19’s complex evolution and dynamics in 64 Bangladeshi districts over space and time. Methods The study employed Bayesian spatio-temporal Poisson modeling to determine the most suitable model, including linear trend, analysis of variance (ANOVA), separable models, and Poisson temporal model for spatiotemporal effects. The study employed the Deviance Information Criterion (DIC) and Watanabe-Akaike information criterion (WAIC) for model selection. The Markov Chain Monte Carlo approach also provided information regarding both prior and posterior realizations. Results The results of our study indicate that the spatio-temporal Poisson ANOVA model outperformed all other models when considering various criteria for model selection and validation. This finding underscores the significant relationship between spatial and temporal variations and the number of cases. Additionally, our analysis reveals that maximum temperature does not appear to have a significant association with infected cases. On the other hand, factors such as humidity (%), population density, urban population, aging index, literacy rate (%), households with internet users (%), and complete vaccination coverage all play vital roles in correlating with the number of affected cases in Bangladesh. Conclusions The research has demonstrated that demographic, meteorological, and vaccination variables possess significant potential to be associated with COVID-19-affected cases in Bangladesh. These data show that there are interconnections between space and time, which shows how important it is to use integrated modeling in pandemic management. An assessment of the risks particular to an area allows government agencies and communities to concentrate their efforts to mitigate those risks.

  17. Cities with the highest population density globally 2023

    • statista.com
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest population density globally 2023 [Dataset]. https://www.statista.com/statistics/1237290/cities-highest-population-density/
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    World
    Description

    Mogadishu in Somalia led the ranking of cities with the highest population density in 2023, with 33,244 residents per square kilometer. When it comes to countries, Monaco is the most populated state worldwide.

  18. Data set of key factors of heat wave risk in Dhaka, Bangladesh, 2015

    • tpdc.ac.cn
    • data.tpdc.ac.cn
    zip
    Updated Jan 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fei YANG; Cong YIN (2021). Data set of key factors of heat wave risk in Dhaka, Bangladesh, 2015 [Dataset]. http://doi.org/10.11888/Disas.tpdc.271121
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 13, 2021
    Dataset provided by
    Tanzania Petroleum Development Corporationhttp://tpdc.co.tz/
    Authors
    Fei YANG; Cong YIN
    Area covered
    Description

    The data set is a 2015 heat wave hazard, exposure and vulnerability data set in Dhaka, Bangladesh, with a spatial resolution of 30m and a temporal resolution of yearly. Heat wave hazard is an index to measure the severity of heat wave event, which is expressed by surface temperature; heat wave exposure refers to the degree that human, livelihood and economy may be adversely affected, which is expressed by nighttime lighting data, and population density. The population older than 65 and younger than 5 years old constitute vulnerable groups; heat wave vulnerability is a measure of increased / reduced risk in the environment. The distance from road / hospital and ambulance station / water body, NDVI, impervious layer and slum area are used to represent the vulnerability of high temperature heat wave. The data set has been proved by experts, which can provide support for regional high temperature heat wave risk assessment.

  19. Global population survey data set (1950-2018)

    • tpdc.ac.cn
    • data.tpdc.ac.cn
    zip
    Updated Sep 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wen DONG (2020). Global population survey data set (1950-2018) [Dataset]. https://www.tpdc.ac.cn/view/googleSearch/dataDetail?metadataId=ece5509f-2a2c-4a11-976e-8d939a419a6c
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 3, 2020
    Dataset provided by
    Tanzania Petroleum Development Corporationhttp://tpdc.co.tz/
    Authors
    Wen DONG
    Area covered
    Description

    "Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.This dataset includes demographic data of 22 countries from 1960 to 2018, including Sri Lanka, Bangladesh, Pakistan, India, Maldives, etc. Data fields include: country, year, population ratio, male ratio, female ratio, population density (km). Source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision. ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme. Periodicity: Annual Statistical Concept and Methodology: Population estimates are usually based on national population censuses. Estimates for the years before and after the census are interpolations or extrapolations based on demographic models. Errors and undercounting occur even in high-income countries. In developing countries errors may be substantial because of limits in the transport, communications, and other resources required to conduct and analyze a full census. The quality and reliability of official demographic data are also affected by public trust in the government, government commitment to full and accurate enumeration, confidentiality and protection against misuse of census data, and census agencies' independence from political influence. Moreover, comparability of population indicators is limited by differences in the concepts, definitions, collection procedures, and estimation methods used by national statistical agencies and other organizations that collect the data. The currentness of a census and the availability of complementary data from surveys or registration systems are objective ways to judge demographic data quality. Some European countries' registration systems offer complete information on population in the absence of a census. The United Nations Statistics Division monitors the completeness of vital registration systems. Some developing countries have made progress over the last 60 years, but others still have deficiencies in civil registration systems. International migration is the only other factor besides birth and death rates that directly determines a country's population growth. Estimating migration is difficult. At any time many people are located outside their home country as tourists, workers, or refugees or for other reasons. Standards for the duration and purpose of international moves that qualify as migration vary, and estimates require information on flows into and out of countries that is difficult to collect. Population projections, starting from a base year are projected forward using assumptions of mortality, fertility, and migration by age and sex through 2050, based on the UN Population Division's World Population Prospects database medium variant."

  20. Risk assessment dataset of storm surge disasters at hundred meters scale of...

    • data.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Jun 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TPDC (2020). Risk assessment dataset of storm surge disasters at hundred meters scale of Pan-third pole critical node region (2018) [Dataset]. https://data.tpdc.ac.cn/view/googleSearch/dataDetail?metadataId=367d9337-3db2-443b-aa40-eda0a92c357e
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 29, 2020
    Dataset provided by
    Tanzania Petroleum Development Corporationhttp://tpdc.co.tz/
    Area covered
    Description

    On the basis of the global tropical cyclone track dataset, the global disaster events and losses dataset, the global tide level observation dataset and DEM data, coastline distribution data, land cover information, population and other related data of the Belt and Road, indicators related to the disaster risk and vulnerability of storm surge in each unit are extracted and calculated using100 meter grid as evaluation unit, such as historical intensity of tide level frequency of storm historic arrival, historical loss, population density, land cover type, etc. The comprehensive index of storm surge disaster risk is constructed, and the risk index of storm surge is obtained by using the weighted method. Finally, the storm surge risk index is normalized to 0-1, which can be used to evaluate the risk level of storm surge in each assessment unit.At the same time, the data set includes the corresponding risk index, exposure index and vulnerability assessment results.The key nodes data set only contains 11 nodes which have risks ((Chittagong port, Bangladesh; Kyaukpyu Port, Myanmar; Kolkata, India; Yangon Port, Myanmar; Karachi, Pakistan; Dhaka, Bangladesh; Mumbai, India; Hambantota Port, Sri Lanka; Bangkok, Thailand; China-Myanmar Oil and Gas Pipeline; Jakarta-Bandung High-speed Railway).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Bangladesh - Population density - Dataset - ENERGYDATA.INFO [Dataset]. https://energydata.info/dataset/bangladesh--population-density-2015

Bangladesh - Population density - Dataset - ENERGYDATA.INFO

Explore at:
Dataset updated
Sep 23, 2024
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Bangladesh
Description

Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata. DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted. REGION: Africa SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator) PROJECTION: Geographic, WGS84 UNITS: Estimated persons per grid square MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743. FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org) FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.

Search
Clear search
Close search
Google apps
Main menu