This dataset was created by Aarushi Kamboj
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by kavinp0301
Released under Apache 2.0
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Bank Turnover Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/barelydedicated/bank-customer-churn-modeling on 28 January 2022.
--- No further description of dataset provided by original source ---
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In recent years, with the continuous improvement of the financial system and the rapid development of the banking industry, the competition of the banking industry itself has intensified. At the same time, with the rapid development of information technology and Internet technology, customers’ choice of financial products is becoming more and more diversified, and customers’ dependence and loyalty to banking institutions is becoming less and less, and the problem of customer churn in commercial banks is becoming more and more prominent. How to predict customer behavior and retain existing customers has become a major challenge for banks to solve. Therefore, this study takes a bank’s business data on Kaggle platform as the research object, uses multiple sampling methods to compare the data for balancing, constructs a bank customer churn prediction model for churn identification by GA-XGBoost, and conducts interpretability analysis on the GA-XGBoost model to provide decision support and suggestions for the banking industry to prevent customer churn. The results show that: (1) The applied SMOTEENN is more effective than SMOTE and ADASYN in dealing with the imbalance of banking data. (2) The F1 and AUC values of the model improved and optimized by XGBoost using genetic algorithm can reach 90% and 99%, respectively, which are optimal compared to other six machine learning models. The GA-XGBoost classifier was identified as the best solution for the customer churn problem. (3) Using Shapley values, we explain how each feature affects the model results, and analyze the features that have a high impact on the model prediction, such as the total number of transactions in the past year, the amount of transactions in the past year, the number of products owned by customers, and the total sales balance. The contribution of this paper is mainly in two aspects: (1) this study can provide useful information from the black box model based on the accurate identification of churned customers, which can provide reference for commercial banks to improve their service quality and retain customers; (2) it can provide reference for customer churn early warning models of other related industries, which can help the banking industry to maintain customer stability, maintain market position and reduce corporate losses.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Abhijeet0742
Released under Apache 2.0
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by VanshikaM_28
Released under Apache 2.0
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Muhammad Hassaan
Released under CC0: Public Domain
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Abhinavvvvv_vvvvv
Released under Apache 2.0
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In recent years, with the continuous improvement of the financial system and the rapid development of the banking industry, the competition of the banking industry itself has intensified. At the same time, with the rapid development of information technology and Internet technology, customers’ choice of financial products is becoming more and more diversified, and customers’ dependence and loyalty to banking institutions is becoming less and less, and the problem of customer churn in commercial banks is becoming more and more prominent. How to predict customer behavior and retain existing customers has become a major challenge for banks to solve. Therefore, this study takes a bank’s business data on Kaggle platform as the research object, uses multiple sampling methods to compare the data for balancing, constructs a bank customer churn prediction model for churn identification by GA-XGBoost, and conducts interpretability analysis on the GA-XGBoost model to provide decision support and suggestions for the banking industry to prevent customer churn. The results show that: (1) The applied SMOTEENN is more effective than SMOTE and ADASYN in dealing with the imbalance of banking data. (2) The F1 and AUC values of the model improved and optimized by XGBoost using genetic algorithm can reach 90% and 99%, respectively, which are optimal compared to other six machine learning models. The GA-XGBoost classifier was identified as the best solution for the customer churn problem. (3) Using Shapley values, we explain how each feature affects the model results, and analyze the features that have a high impact on the model prediction, such as the total number of transactions in the past year, the amount of transactions in the past year, the number of products owned by customers, and the total sales balance. The contribution of this paper is mainly in two aspects: (1) this study can provide useful information from the black box model based on the accurate identification of churned customers, which can provide reference for commercial banks to improve their service quality and retain customers; (2) it can provide reference for customer churn early warning models of other related industries, which can help the banking industry to maintain customer stability, maintain market position and reduce corporate losses.
This dataset was created by Ananya Nayan
Released under Data files © Original Authors
This dataset was created by DOMBALE UMADEVI
This dataset was created by Hexon Hartley Jimenez
This dataset was created by Aditi Singh
This dataset is for ABC Multistate bank with following columns:
Aim is to Predict the Customer Churn for ABC Bank.
https://miro.medium.com/max/737/1*Xap6OxaZvD7C7eMQKkaHYQ.jpeg" alt="">
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Scott Horning
Released under CC0: Public Domain
This dataset was created by Rubel Mia
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset was created by namneesh kashyap
Released under CC BY-SA 4.0
This dataset was created by Deborshi bhattacharya
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Bhavya Goyal
Released under MIT
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by raylin ma
Released under Apache 2.0
This dataset was created by Aarushi Kamboj