These data are based on the latest Veteran Population Projection Model, VetPop2020, provided by the National Center for Veterans Statistics and Analysis, published in 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
confirmation bias can cause people to overweigh information that confirms their beliefs
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This bar chart displays depth (cm) by acquisition year using the aggregation sum. The data is about artworks.
https://doi.org/10.17026/fp39-0x58https://doi.org/10.17026/fp39-0x58
This deposit includes the data that was collected in an experimental study on debunking strategies for misleading bar charts, involving 2 surveys (one week delay) with a total of 24 unique bar charts each with two bars, filled in by 441 representative (age, ethnicity, gender) participants from the USA. De experiment compares four methods for correcting misleading bar charts with truncated vertical axes by measuring the participants evaluated difference between the bars at five time points. Measures were taken on a visual analogue scale. The first survey also included a short graph literacy scale and a question on highest completed educational level. Date Submitted: 2022-06-24
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Counts of Part I committed in San Mateo County from 1985 on. This dataset also includes Part II crimes from 2013 on.
Part I crimes include: homicide, rape, robbery, aggravated assault, burglary, motor vehicle theft, larceny-theft, and arson. These counts include crimes committed at San Francisco International Airport (SFO), Unincorporated San Mateo County, Woodside, Portola Valley, San Carlos from 10/31/10 forward; Half Moon Bay from 6/12/11 forward; and Millbrae from 3/4/12 forward.
Part II crimes do not include San Francisco International Airport (SFO) cases and is an estimate only. An estimate is required because there are no specific data types used when keying in Type II crime types. Therefore, Records Manager judgment is used.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Emergency Medical Service ambulance dispatch incidents in Marin County, CA, for the period beginning March 1, 2013 through June 30, 2017. Data is updated quarterly. Data includes time stamps of events for each dispatch, nature of injury, and location of injury. Data also includes geocoding of most incident locations, however, specific street address locations are "obfuscated" and are generally shown within a block and are not, therefore, exact locations. Geocoding results are also based on the quality of the address information provided, and should therefore not be considered 100% accurate.
Some of the data may be interpreted incorrectly without adequate knowledge of the clinical context. Please contact EMS@marincounty.org if you have any questions about the interpretation of fields in this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada Exports of copper bars, rods and profiles to Jordan was US$108.98 Thousand during 2020, according to the United Nations COMTRADE database on international trade. Canada Exports of copper bars, rods and profiles to Jordan - data, historical chart and statistics - was last updated on June of 2025.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Animal shelter data
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Cases created since 7/1/2008 with location information
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Set of annual MDOT perfromance data including port, transit, bridge and highway condition, and MVA branch office wait time data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead of
urban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global bar graph displays market is anticipated to experience remarkable growth in the coming years, driven by increasing demand from various end-user industries. The market size was valued at USD XXX million in 2025 and is projected to reach USD XX million by 2033, exhibiting a CAGR of XX% from 2025 to 2033. This growth can be attributed to factors such as technological advancements, rising demand for visual data representation, and increasing adoption in sectors like electronics, medical, and aerospace. Among the key segments, the LED and LCD display types are expected to witness significant growth, owing to their superior brightness, clarity, and energy efficiency. The major regions driving the market include North America, Europe, and Asia Pacific. North America holds a dominant market share, with the United States being a notable contributor. The Asia Pacific region is projected to grow at a higher rate during the forecast period, driven by the rapidly expanding electronics and semiconductor industries in countries like China, India, and Japan. Key players in the bar graph displays market include akYtec, Everlight Electronics, Kingbright, Sifam Tinsley, and Texmate, among others. These companies are focusing on innovation, strategic partnerships, and geographical expansion to enhance their market presence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays books by BNB id using the aggregation count. The data is filtered where the author is James J. Mischler. The data is about books.
This dataset contains data about the highest grade completed by residents of San Mateo County by city. Grade levels include less than high school graduate, high school graduate, some college or associate's degree, and bachelor's degree or higher. This data was extracted from the United States Cenus Bureau's American Community Survey 2014 5 year estimates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset includes 15 visual diagrams (pie and bar charts) comparing the distribution of agricultural residues, OFMSW, and used cooking oil across each state in Nigeria, province in South Africa, and county in Kenya. These summaries provide a comparative overview of regional feedstock strengths. The charts complement quantitative analyses by providing visual summaries of feedstock availability.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays cases (people) by diseases daily using the aggregation sum. The data is filtered where the disease is COVID-19. The data is about diseases per day.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset contains raw response data to a nano-survey that was conducted in Indonesia and Kenya on the demand for open financial data. You can read more about the project here: (http://bit.ly/OpenDemand). A nano-survey is an innovative technology that extends a brief survey to a random sampling of internet users. Note: "NA" indicates "No Answer."
10,000 Sets-Digital Chart Q&A Data, covering categories such as line charts, bar charts, pie charts, scatter plots, composite types, and tables. Each image has two rounds of Q&A, one for numerical reading and the other for numerical calculation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The aim of this work was to analyze the statistical graphs included in the two most frequently series of textbooks used in Costa Rica basic education. We analyze the type of graph, its semiotic complexity, and the data context, as well as the type of task, reading level required to complete the task and purpose of the graph within the task. We observed the predominance of bar graphs, third level of semiotic complexity (representing a distribution), second reading level (reading between the data), work and school context, reading and computation tasks and analysis purpose. We describe the differences in the various grades and between both editorials, as well as differences and coincidences with results of other textbook studies carried out in Spain and Chile.
These data are based on the latest Veteran Population Projection Model, VetPop2020, provided by the National Center for Veterans Statistics and Analysis, published in 2023.