Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This soil burn severity dataset is a compilation of all USFS BAER assessment data produced by the U.S. Forest Service in 2018. Each soil burn severity dataset was derived from satellite imagery, primarily Landsat 8 and Sentinel 2, and field validated by a Forest Service Burned Area Emergency Response (BAER) team. It is based upon an initial Burned Area Reflectance Classification (BARC). The BARC is created by analyzing pre-fire and post-fire satellite scenes and then calculating a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire and captures the combined effects of the fire to vegetation and soil components of the ecosytem. The preliminary BARC dataset was assessed by a Forest Service BAER team and modified, if necessary, based on field conditions. This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
These data products are preliminary burn severity assessments derived from data obtained from suitable imagery (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned Area Emergency Response (BAER) teams whose objective is a soil burn severity assessment. It is not, however, appropriate in all ecosystems or fires. It is expected that BAER teams will adjust the thresholds to match field observations to produce a soil burn severity. This map layer is a thematic raster image of burn severity classes for all inventoried fires occurring in CONUS during calendar year 2024. Fires omitted from this mapped inventory are those where suitable satellite imagery was not available, or fires which were not discernable from available imagery.
The USDA Forest Service Burned Area Emergency Response (BAER) Imagery Support program produces geospatial data of post-fire burn severities using standardized change detection methods based on Landsat, Sentinel-2, or similar multispectral satellite imagery. The BAER Imagery Support program provides an initial Burned Area Reflectance Classification (BARC) product to BAER teams. The BARC is a preliminary vegetation burn severity product which assesses severity based on the magnitude of detectable change to above ground biomass. The BAER teams collect field data on post-fire soil conditions that is used with the BARC to create the final soil burn severity (SBS) classification product for each BAER assessment. The SBS data is preferred for sharing publicly since it has been validated by the BAER team in the field. BAER teams use the soil burn severity product to assess the need for and application of emergency soil stabilization treatments following a wildfire. National mosaics compiling SBS classification products from individual BAER assessments are prepared on an annual basis. This SBS dataset is a compilation of final burn severity data products created by USDA Forest Service BAER teams from 2017 through the most recent completed fire year. It is a thematic raster dataset with four burn severity classes: unburned to very low, low, moderate, and high. The spatial resolution is variable based on the imagery used to create the initial BARC product and subsequent processing by the BAER teams. Datasets are typically 30m for Landsat assessments and 20m for Sentinel-2 assessments.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
These data products are preliminary burn severity assessments derived from post sensor data (including Landsat TM, Landsat ETM+, Landsat OLI, Sentinel 2A, and Sentinel 2B). The pre-fire and post-fire subsets included were used to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire. The severity ratings are influenced by the effects to the canopy. The severity rating is based upon a composite of the severity to the understory (grass, shrub layers), midstory trees and overstory trees. Because there is often a strong correlation between canopy consumption and soil effects, this algorithm works in many cases for Burned Area Emergency Response (BAER) teams whose objective is a soil burn severity assessment. It is not, however, appropriate in all ecosystems or fires. It is expected that BAER teams will adjust the thresholds to match field observations to produce a soil burn severity. This map layer is ...
Soil Burn Severity product produced by BAER teams for California Fires in 2021 as published by the U.S. Forest Service Region 5 at BAER Imagery Support Data Download | Burned Area Emergency Response (BAER) Imagery Support (nwcg.gov).NRCS uses this information to inform recovery and response efforts in the field.Identification Information Citation Originator: USDA Forest Service, Geospatial Technology and Applications Center, BAER Imagery Support Program Publication Date: 2021-09-28 Title: Soil Burn Severity Dataset for the DIXIE Fire occurring on the Plumas National Forest National Forest Publication Information Publication Place: Salt Lake City, Utah, USA Publisher: USDA Forest Service Geospatial Data Presentation Form: raster digital data Online Linkage: https://fsapps.nwcg.gov/afm/baer/download.php Description Abstract: This soil burn severity dataset was derived from Sentinel 2 data and field validated by a Forest Service Burned Area Emergency Response (BAER) team. It is based upon an initial Burned Area Reflectance Classification (BARC) dataset created by analyzing satellite imagery. A pre-fire and post-fire Sentinel 2 scene were processed to develop a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire and captures the combined effects of the fire to vegetation and soil components of the ecosytem. The preliminary BARC dataset was assessed by a Forest Service BAER team and modified, if necessary, based on field conditions. Purpose: These data were created by the USDA Forest Service Geospatial Technology and Applications Center (GTAC) to support Burned Area Emergency Response (BAER) teams. Process Step Process Description: These data products are derived from Sentinel 2 data. Pre-fire and post-fire scenes are analyzed to create a differenced Normalized Burn Ratio (dNBR) image. The dNBR image portrays the variation of burn severity within the fire. The pre- and post-fire images are terrain corrected and further processed to convert top of atmosphere reflectance. The Normalized Burn Ratio (NBR) is computed for the pre- and post-fire images using the following formula: (NIR Band - SWIR Band) / (NIR Band + SWIR Band) = NBR The Differenced NBR is computed to determine severity by subtracting the post-fire NBR from the pre-fire NBR: (PreNBR - PostNBR) = dNBR Original BARC thresholds: Unburned/Low threshold = 65 Low/Moderate threshold = 133 Moderate/High threshold = 245 Revised SBS thresholds: Unburned/Low threshold = 49 Low/Moderate threshold = 94 Moderate/High threshold = 194 General descriptions of the severity classes are below: Unburned / Very low: The area after the fire was indistinguishable from pre-fire conditions. This does not always indicate the area did not burn (i.e. canopy may be occluding the burn signal). Low: Areas of surface fire with little detected change in cover and little detected mortality of the dominant vegetation. Little to no change in the soil color, structure and condition occured. Moderate: This severity class is between low and high and means there is a mixture of detected effects on the dominant vegetation. High: Areas where the canopy has high to complete consumption. Changes to soil structure, color and condition are significant and hydrophobicity may have occured.
LANDFIRE disturbance data are developed to provide temporal and spatial information related to landscape change for determining vegetation transitions over time and for making subsequent updates to LANDFIRE vegetation, fuel and other data. Disturbance data include attributes associated with disturbance year, type, and severity. These data are developed through use of Landsat satellite imagery, local agency derived disturbance polygons, and other ancillary data. DATA SUMMARY: The disturbance data are developed through a multistep process. Inputs to this process include; Landsat imagery and derived NBR (normalized burn ratio) data; polygon data developed by local agencies for the LANDFIRE Refresh effort; fire data obtained from MTBS (Monitoring Trends in Burn Severity), BARC (Burned Area Reflectance Classification,), and RAVG (Rapid Assessment of Vegetation Condition after Wildfire) fire mapping efforts; and PAD (Protected Area Database) data.Refresh Event polygon data are provided to LANDFIRE by various local, regional, and national agencies and organizations. Disturbance type and year information is included as attributes for each polygon and transferred to the disturbance grids. Severity is determined by using dNBR (difference Normalized Burn Ratio) data classified into high, medium, and low severity levels based on a statistical comparison with the MTBS, BARC, and RAVG fire severity. Vegetation Tracker (Huang, et. al. 2008) algorithms are used to identify disturbances outside of Refresh Events. VCT data are developed for each year identifying disturbed areas as well as severity. Since disturbance type (i.e. causality) is not determined in the VCT process, a spatial analysis is done comparing the VCT output to buffered (1kilometer) Refresh Events and PAD GAP Status information (land use characteristics). While not providing a precise type of disturbance, this analysis provides information useful for narrowing down the types of disturbance that could or could not typically occur.Each zone has ten disturbance grids, one for each year 1999 to 2008. Each grid is attributed with year, disturbance type (if known, otherwise a description of possible types), severity, and the data sources used to create the data.
LANDFIRE's Annual Disturbance products track how landscapes change across space and time on an annual basis. The Annual Disturbance (Dist) product identifies satellite-detected areas larger than 4.5 hectares (11 acres) that underwent natural or human-caused changes within a specific year (for Dist23, October 1, 2022 – September 30, 2023), or represent fire activity/field treatments as small as 80 square meters. While creating the Annual Disturbance product a variety of data sources are leveraged. 1) National fire mapping programs: This includes information from Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), which offer severity information for fire-caused disturbances. 2) Agency-reported events: There are 18 designated classes for contributed polygon "Event" types such as disease, insects, development, harvest, etc. that are reported by government agencies for inclusion into the disturbance product. 3) Remotely sensed imagery: Harmonized Landsat Sentinel (HLS) satellite images offer a comprehensive-uninterrupted view of the landscape covering all lands, public and private, to fill in the gaps inherent in the previous data sources. These data are reviewed and edited by a team of image analysts to ensure and maintain high quality standards. To create the LF Annual Disturbance product, individual Landsat scenes are stacked and made into composites representing the 15th, 50th, and 90th percentiles of all stacked pixels (band-by-band) to reduce data gaps caused by clouds or other anomalies. Composite imagery from the specified mapping year and the two prior years serves as the base data from which change products such as the Normalized Differenced Vegetation Index (dNDVI), the Normalized Burn Ratio (dNBR), and the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013) are derived. Image analysts collectively use these datasets (separately or in combination) to isolate the true change from false change (commission errors). False changes can be attributed to many anomalies but are most commonly caused by differences in annual or seasonal phenology, artifacts in the image composites, or difficult to map classes such as wetlands and grasses. Fire-caused disturbances sourced from MTBS may contain data gaps where clouds obscure the full burn scar from being mapped. Models trained from pre-fire and post-fire Landsat data are used to fill these gaps. The result is gap-free continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from modeling are noted as such in the Annual Disturbance attribute table. Smaller fires that do not meet the size criteria set forth by MTBS may be attributed as fire by using Burned Area (BA) Level-3 science products derived from Landsat 8 and 9. BA data is only available in the lower 48 states (CONUS). Causality information assigned to annual disturbance products are prioritized by source, with the highest priorities reserved for fire mapping program data (MTBS, BARC, and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, satellite image-based change. Severity is assigned directly from fire program data. For events and satellite-detected change, severity is derived from pre- and post-burn standard deviation values of the differenced Normalized Burn Ratio (dNBR). When mapping the LF Annual Disturbance product, the start date is utilized for disturbances from fire program data whereas all other disturbances utilize the end date.
This layer is the current fire year burn severity classification for large fires (greater than 100 ha). Burn severity mapping is conducted using best available pre- and post-fire satellite multispectral imagery acquired by the MultiSpectral Instrument (MSI) aboard the Sentinel-2 satellite or the Operational Land Imager (OLI) sensor aboard the Landsat-8 and 9 satellites. Every attempt is made to use cloud, smoke, shadow and snow-free imagery that was acquired prior to September 30th. However, in late fire seasons imagery acquired after September 30th may be used. This layer is considered an interim product for the 1-year-later burn severity dataset (WHSE_FOREST_VEGETATION.VEG_BURN_SEVERITY_SP). Mapping conducted during the following growing season benefits from greater post-fire image availability and is expected to be more representative of tree mortality. #### Methodology: • Select suitable pre- and post-fire imagery or create a cloud/snow/smoke-free composite from multiple images scenes • Calculate normalized burn severity ratio (NBR) for pre- and post-fire images • Calculate difference NBR (dNBR) where dNBR = pre NBR – post NBR • Apply a scaling equation (dNBR_scaled = dNBR*1000 + 275)/5) • Apply BARC thresholds (76, 110, 187) to create a 4-class image (unburned, low severity, medium severity, and high severity) • Apply region-based filters to reduce noise • Confirm burn severity analysis results through visual quality control • Produce a vector dataset and apply Euclidian distance smoothing
LANDFIRE's Annual Disturbance products track how landscapes change across space and time on an annual basis. The Annual Disturbance (Dist) product identifies satellite-detected areas larger than 4.5 hectares (11 acres) that underwent natural or human-caused changes within a specific year (for Dist23, October 1, 2022 – September 30, 2023), or represent fire activity/field treatments as small as 80 square meters. While creating the Annual Disturbance product a variety of data sources are leveraged. 1) National fire mapping programs: This includes information from Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), which offer severity information for fire-caused disturbances. 2) Agency-reported events: There are 18 designated classes for contributed polygon "Event" types such as disease, insects, development, harvest, etc. that are reported by government agencies for inclusion into the disturbance product. 3) Remotely sensed imagery: Harmonized Landsat Sentinel (HLS) satellite images offer a comprehensive-uninterrupted view of the landscape covering all lands, public and private, to fill in the gaps inherent in the previous data sources. These data are reviewed and edited by a team of image analysts to ensure and maintain high quality standards. To create the LF Annual Disturbance product, individual Landsat scenes are stacked and made into composites representing the 15th, 50th, and 90th percentiles of all stacked pixels (band-by-band) to reduce data gaps caused by clouds or other anomalies. Composite imagery from the specified mapping year and the two prior years serves as the base data from which change products such as the Normalized Differenced Vegetation Index (dNDVI), the Normalized Burn Ratio (dNBR), and the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013) are derived. Image analysts collectively use these datasets (separately or in combination) to isolate the true change from false change (commission errors). False changes can be attributed to many anomalies but are most commonly caused by differences in annual or seasonal phenology, artifacts in the image composites, or difficult to map classes such as wetlands and grasses. Fire-caused disturbances sourced from MTBS may contain data gaps where clouds obscure the full burn scar from being mapped. Models trained from pre-fire and post-fire Landsat data are used to fill these gaps. The result is gap-free continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from modeling are noted as such in the Annual Disturbance attribute table. Smaller fires that do not meet the size criteria set forth by MTBS may be attributed as fire by using Burned Area (BA) Level-3 science products derived from Landsat 8 and 9. BA data is only available in the lower 48 states (CONUS). Causality information assigned to annual disturbance products are prioritized by source, with the highest priorities reserved for fire mapping program data (MTBS, BARC, and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, satellite image-based change. Severity is assigned directly from fire program data. For events and satellite-detected change, severity is derived from pre- and post-burn standard deviation values of the differenced Normalized Burn Ratio (dNBR). When mapping the LF Annual Disturbance product, the start date is utilized for disturbances from fire program data whereas all other disturbances utilize the end date.
LANDFIRE's (LF) Annual Disturbance products provide temporal and spatial information related to landscape change. Annual Disturbance depicts areas of 4.5 hectares (11 acres) or larger that have experienced a natural or anthropogenic landscape change (or treatment) within a given year. For the creation of the Annual Disturbance product, information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC) and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), 18 types of agency-contributed "event" perimeters (see LF Public Events Geodatabase), and remotely sensed Landsat imagery. To create the LF Annual Disturbance products, individual Landsat scenes are stacked and made into composites representing the 50th percentile of all stacked pixels (band-by-band) to reduce data gaps caused by clouds or other anomalies. Composite imagery from the specified mapping year, the two prior years, and the following year serve as the base data from which change products such as the Normalized Differenced Vegetation Index (dNDVI), the Normalized Burn Ratio (dNBR), and the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013) are derived. Image analysts collectively use these datasets (separately or in combination) to isolate the true change from false change (commission errors). False changes can be attributed to many anomalies but are mostly caused by differences in annual or seasonal phenology, and/or artifacts in the image composites. Fire-caused disturbances sourced from MTBS may contain data gaps where clouds obscure the full burn scar from being mapped. Models trained from pre-fire and post-fire Landsat data are used to fill these gaps. The result is gap-free continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in the Annual Disturbance attribute table. Smaller fires that do not meet the size criteria set forth by MTBS may be attributed using Burned Area (BA), informed from Landsat Level-3 science products and only available in the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC, and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image-based change.
LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat Seven SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.
LANDFIRE's (LF) Annual Disturbance products provide temporal and spatial information related to landscape change. Annual Disturbance depicts areas of 4.5 hectares (11 acres) or larger that have experienced a natural or anthropogenic landscape change (or treatment) within a given year. For the creation of the Annual Disturbance product, information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC) and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), 18 types of agency-contributed "event" perimeters (see LF Public Events Geodatabase), and remotely sensed Landsat imagery. To create the LF Annual Disturbance products, individual Landsat scenes are stacked and made into composites representing the 50th percentile of all stacked pixels (band-by-band) to reduce data gaps caused by clouds or other anomalies. Composite imagery from the specified mapping year, the two prior years, and the following year serve as the base data from which change products such as the Normalized Differenced Vegetation Index (dNDVI), the Normalized Burn Ratio (dNBR), and the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013) are derived. Image analysts collectively use these datasets (separately or in combination) to isolate the true change from false change (commission errors). False changes can be attributed to many anomalies but are mostly caused by differences in annual or seasonal phenology, and/or artifacts in the image composites. Fire-caused disturbances sourced from MTBS may contain data gaps where clouds obscure the full burn scar from being mapped. Models trained from pre-fire and post-fire Landsat data are used to fill these gaps. The result is gap-free continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in the Annual Disturbance attribute table. Smaller fires that do not meet the size criteria set forth by MTBS may be attributed using Burned Area (BA), informed from Landsat Level-3 science products and only available in the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC, and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image-based change.
LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat7 SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.
LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat Seven SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the Highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.
Soil burn severity dataset created from the BARC image (v2) and field observations by the BAER Team. Non Burn (1-19) Low Severity (20-124 + shadow) Mod Severity (125-199) High Severity (200-254). The affect of a fire on ground surface characteristics, including char depth, organic matter loss, altered color and structure, and reduced infiltration. The classification of post-fire soil condition is based on fire-induced changes in physical and biological soil properties. During post-fire assessments, there has been an intentional effort to use the term “soil burn severity” to differentiate post-fire soil properties from fire effects on vegetation (such as tree mortality) and/or general fire effects on long-term ecosystem health.The corresponding Integration of Resource Management Applications (IRMA) NPS Data Store reference is Great Smoky Mountains National Park Chimney Tops 2 Fire Soil Burn Severity.
LANDFIRE’s (LF) Annual Disturbance products provide temporal and spatial information related to landscape change. Annual Disturbance depicts areas of 4.5 hectares (11 acres) or larger that have experienced a natural or anthropogenic landscape change (or treatment) within a given year. For the creation of the Annual Disturbance product, information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC) and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), 18 types of agency-contributed “event” perimeters (see LF Public Events Geodatabase), and remotely sensed Landsat imagery. To create the LF Annual Disturbance products, individual Landsat scenes are stacked and made into composites representing the 50th percentile of all stacked pixels (band-by-band) to reduce data gaps caused by clouds or other anomalies. Composite imagery from the specified mapping year, the two prior years, and the following year serve as the base data from which change products such as the Normalized Differenced Vegetation Index (dNDVI), the Normalized Burn Ratio (dNBR), and the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013) are derived. Image analysts collectively use these datasets (separately or in combination) to isolate the true change from false change (commission errors). False changes can be attributed to many anomalies but are mostly caused by differences in annual or seasonal phenology, and/or artifacts in the image composites. Fire-caused disturbances sourced from MTBS may contain data gaps where clouds obscure the full burn scar from being mapped. Models trained from pre-fire and post-fire Landsat data are used to fill these gaps. The result is gap-free continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in the Annual Disturbance attribute table. Smaller fires that do not meet the size criteria set forth by MTBS may be attributed using Burned Area (BA), informed from Landsat Level-3 science products and only available in the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC, and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image-based change.
LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat Seven SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the Highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.
LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat Seven SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the Highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.
LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat Seven SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the Highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.
LANDFIRE's (LF) Annual Disturbance (Dist) product provides temporal and spatial information related to landscape change. Dist depicts areas that have experienced a disturbance within a given year of 4.5 hectares (11 acres) or larger, along with cause and severity. Information sources include national fire mapping programs such as Monitoring Trends in Burn Severity (MTBS), Burned Area Reflectance Classification (BARC), and Rapid Assessment of Vegetation Condition after Wildfire (RAVG), local user/agency contributed data (LF Events Geodatabase), and remotely sensed Landsat imagery. Composite Landsat image pairs from the current year, prior year, and following year are spectrally compared to determine where change occurred and its corresponding severity. Additionally, vegetation indices (Normalized Differenced Vegetation Index [NDVI] and Normalized Burn Ratio [NBR]) serve as inputs into the Multi-Index Integrated Change Algorithm (MIICA) (Jin et al. 2013); MIICA outputs and differenced products (e.g., dNDVI and dNBR) are used to locate change. Predictive modeling based on the previous 10 years of disturbance data provides an additional dataset useful for locating disturbance. Image analysts use the aforementioned datasets separately or in combination to isolate true change from false change (e.g., change caused by stark differences in phenology rather than a true disturbance event). The accuracy of the final product is often related to the quality of the Landsat image composite. Areas with persistent cloud cover are particularly challenging (e.g., the northeast US). Fire caused disturbances sourced from MTBS may contain data gaps where clouds, smoke, water or Landsat7 SLC-off stripes exist. Models trained from pre-fire and post-fire Landsat data are used to fill the gaps. The result is continuous severity and extent information for all MTBS fire disturbances. MTBS pixels derived from gap filling techniques, such as modeling, are noted as such in their corresponding attribute table. Smaller fires that do not meet the size criteria set forth by MTBS) may be attributed as a Burned Area Essential Climate Variable (BAECV), which are only produced for the lower 48 states. Causality and severity information assigned to a disturbance are prioritized by source, with the highest priorities reserved for fire mapping programs (MTBS, BARC and RAVG) followed by user-contributed events contained in the LF Events Geodatabase, and lastly, Landsat image based change.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This soil burn severity dataset is a compilation of all USFS BAER assessment data produced by the U.S. Forest Service in 2018. Each soil burn severity dataset was derived from satellite imagery, primarily Landsat 8 and Sentinel 2, and field validated by a Forest Service Burned Area Emergency Response (BAER) team. It is based upon an initial Burned Area Reflectance Classification (BARC). The BARC is created by analyzing pre-fire and post-fire satellite scenes and then calculating a differenced Normalized Burn Ratio (dNBR) image. The dNBR image attempts to portray the variation of burn severity within a fire and captures the combined effects of the fire to vegetation and soil components of the ecosytem. The preliminary BARC dataset was assessed by a Forest Service BAER team and modified, if necessary, based on field conditions. This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.