20 datasets found
  1. Mountain Quail Habitat Model for NSNF Connectivity - CDFW [ds1046]

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). Mountain Quail Habitat Model for NSNF Connectivity - CDFW [ds1046] [Dataset]. https://catalog.data.gov/dataset/mountain-quail-habitat-model-for-nsnf-connectivity-cdfw-ds1046-14d8f
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  2. Southern Alligator Lizard Habitat Model for NSNF Connectivity - CDFW...

    • data.ca.gov
    • data.cnra.ca.gov
    • +3more
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2023). Southern Alligator Lizard Habitat Model for NSNF Connectivity - CDFW [ds1051] [Dataset]. https://data.ca.gov/dataset/southern-alligator-lizard-habitat-model-for-nsnf-connectivity-cdfw-ds1051
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  3. Black Bear Habitat Model for NSNF Connectivity - CDFW [ds1008]

    • catalog.data.gov
    • data.ca.gov
    • +6more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). Black Bear Habitat Model for NSNF Connectivity - CDFW [ds1008] [Dataset]. https://catalog.data.gov/dataset/black-bear-habitat-model-for-nsnf-connectivity-cdfw-ds1008-0a31e
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman & Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  4. w

    Western Pond Turtle Habitat Model for NSNF Connectivity - CDFW [ds1055]

    • data.wu.ac.at
    • data.cnra.ca.gov
    • +7more
    zip
    Updated Feb 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2018). Western Pond Turtle Habitat Model for NSNF Connectivity - CDFW [ds1055] [Dataset]. https://data.wu.ac.at/schema/data_gov/N2MzMTk3MjUtZjE0YS00NzIwLWI4OWItMjQxNTA4Y2UzYjc2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 8, 2018
    Dataset provided by
    State of California
    Area covered
    d45018fe1e2ee5990da92f08e6636548c049fbd6
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo’package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence’package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif’format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  5. u

    Data from: Data and code for "Sustainable Human Population Density in...

    • investigacion.ubu.es
    • investigacion.cenieh.es
    • +1more
    Updated 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rodríguez, Jesús; Sommer, Christian; Willmes, Christian; Mateos, Ana; Rodríguez, Jesús; Sommer, Christian; Willmes, Christian; Mateos, Ana (2022). Data and code for "Sustainable Human Population Density in Western Europe between 560.000 and 360.000 years ago" [Dataset]. https://investigacion.ubu.es/documentos/67321e95aea56d4af048594b
    Explore at:
    Dataset updated
    2022
    Authors
    Rodríguez, Jesús; Sommer, Christian; Willmes, Christian; Mateos, Ana; Rodríguez, Jesús; Sommer, Christian; Willmes, Christian; Mateos, Ana
    Area covered
    Western Europe
    Description

    This dataset contains the modeling results GIS data (maps) of the study “Sustainable Human Population Density in Western Europe between 560.000 and 360.000 years ago” by Rodríguez et al. (2022). The NPP data (npp.zip) was computed using an empirical formula (the Miami model) from palaeo temperature and palaeo precipitation data aggregated for each timeslice from the Oscillayers dataset (Gamisch, 2019), as defined in Rodríguez et al. (2022, in review). The Population densities file (pop_densities.zip) contains the computed minimum and maximum population densities rasters for each of the defined MIS timeslices. With the population density value Dc in logarithmic form log(Dc). The Species Distribution Model (sdm.7z) includes input data (folder /data), intermediate results (folder /work) and results and figures (folder /results). All modelling steps are included as an R project in the folder /scripts. The R project is subdivided into individual scripts for data preparation (1.x), sampling procedure (2.x), and model computation (3.x). The habitat range estimation (habitat_ranges.zip) includes the potential spatial boundaries of the hominin habitat as binary raster files with 1=presence and 0=absence. The ranges rely on a dichotomic classification of the habitat suitability with a threshold value inferred from the 5% quantile of the presence data. The habitat suitability (habitat_suitability.zip) is the result of the Species Distribution Modelling and describes the environmental suitability for hominin presence based on the sites considered in this study. The values range between 0=low and 1=high suitability. The dataset includes the mean (pred_mean) and standard deviation (pred_std) of multiple model runs.

  6. Dusky-footed Woodrat Habitat Model for NSNF Connectivity - CDFW [ds1038]

    • catalog.data.gov
    • data.ca.gov
    • +4more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). Dusky-footed Woodrat Habitat Model for NSNF Connectivity - CDFW [ds1038] [Dataset]. https://catalog.data.gov/dataset/dusky-footed-woodrat-habitat-model-for-nsnf-connectivity-cdfw-ds1038-17638
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  7. d

    Acorn Woodpecker Habitat Model for NSNF Connectivity - CDFW [ds1023]

    • datasets.ai
    • data.cnra.ca.gov
    • +8more
    0, 21, 3
    Updated Sep 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2023). Acorn Woodpecker Habitat Model for NSNF Connectivity - CDFW [ds1023] [Dataset]. https://datasets.ai/datasets/acorn-woodpecker-habitat-model-for-nsnf-connectivity-cdfw-ds1023
    Explore at:
    21, 3, 0Available download formats
    Dataset updated
    Sep 29, 2023
    Dataset authored and provided by
    State of California
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  8. g

    Heermann's Kangaroo Rat Habitat Model for NSNF Connectivity - CDFW [ds1042]

    • gimi9.com
    • data.ca.gov
    • +6more
    Updated Nov 25, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Heermann's Kangaroo Rat Habitat Model for NSNF Connectivity - CDFW [ds1042] [Dataset]. https://gimi9.com/dataset/data-gov_heermanns-kangaroo-rat-habitat-model-for-nsnf-connectivity-cdfw-ds1042
    Explore at:
    Dataset updated
    Nov 25, 2014
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  9. California Quail Habitat Model for NSNF Connectivity - CDFW [ds1032]

    • data.cnra.ca.gov
    • data.ca.gov
    • +4more
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2023). California Quail Habitat Model for NSNF Connectivity - CDFW [ds1032] [Dataset]. https://data.cnra.ca.gov/dataset/california-quail-habitat-model-for-nsnf-connectivity-cdfw-ds1032
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  10. d

    Northern Pygmy Owl Habitat Model for NSNF Connectivity - CDFW [ds1048]

    • datasets.ai
    • data.cnra.ca.gov
    • +4more
    0, 21, 3
    Updated Sep 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2023). Northern Pygmy Owl Habitat Model for NSNF Connectivity - CDFW [ds1048] [Dataset]. https://datasets.ai/datasets/northern-pygmy-owl-habitat-model-for-nsnf-connectivity-cdfw-ds1048
    Explore at:
    0, 21, 3Available download formats
    Dataset updated
    Sep 29, 2023
    Dataset authored and provided by
    State of California
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  11. w

    Foothill Yellow-legged Frog Habitat Model for NSNF Connectivity - CDFW...

    • data.wu.ac.at
    • data.cnra.ca.gov
    • +5more
    zip
    Updated Sep 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2016). Foothill Yellow-legged Frog Habitat Model for NSNF Connectivity - CDFW [ds1039] [Dataset]. https://data.wu.ac.at/odso/data_gov/NTdmOTY3NmYtYzJlZS00ZDU5LTgwMTktMmMwZDk3NjJiOGVl
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 9, 2016
    Dataset provided by
    State of California
    Area covered
    53014b5a2bdc3775dd58fd5841a7760b202c2c48
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo’package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence’package in R (Freeman & Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif’format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  12. w

    Cooper's Hawk Habitat Model for NSNF Connectivity - CDFW [ds1037]

    • data.wu.ac.at
    • data.cnra.ca.gov
    • +5more
    zip
    Updated Sep 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2016). Cooper's Hawk Habitat Model for NSNF Connectivity - CDFW [ds1037] [Dataset]. https://data.wu.ac.at/odso/data_gov/OWI1YzkyNWItMDM2My00NDUyLWE1MDAtYTk5MmE4YTdhMmJk
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 9, 2016
    Dataset provided by
    State of California
    Area covered
    87d07ac923572df96887c1793eb1a2271d7addd3
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo’package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence’package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif’format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  13. w

    Lark Sparrow Habitat Model for NSNF Connectivity - CDFW [ds1043]

    • data.wu.ac.at
    • data.cnra.ca.gov
    • +5more
    zip
    Updated Sep 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2016). Lark Sparrow Habitat Model for NSNF Connectivity - CDFW [ds1043] [Dataset]. https://data.wu.ac.at/odso/data_gov/ZTI4NzViZmYtZWU0Ni00OTA2LWI2YTgtMTU5MmE0YTI3MmE1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 9, 2016
    Dataset provided by
    State of California
    Area covered
    092a5ddd0759734735fe59bc2220239fba467b4e
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo’package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence’package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif’format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  14. w

    Black-tailed Jackrabbit Habitat Model for NSNF Connectivity - CDFW [ds1031]

    • data.wu.ac.at
    • data.ca.gov
    • +3more
    zip
    Updated Feb 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2018). Black-tailed Jackrabbit Habitat Model for NSNF Connectivity - CDFW [ds1031] [Dataset]. https://data.wu.ac.at/schema/data_gov/NjgzZGFjZDMtZjczMy00NzM2LWFkZWItZDIyZjljY2Q2NTEx
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 8, 2018
    Dataset provided by
    State of California
    Area covered
    957fb23497467132adb518311a977fe7aa15908d
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo’package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence’package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif’format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  15. Mule Deer Habitat Model for NSNF Connectivity - CDFW [ds1047]

    • data.ca.gov
    • data.cnra.ca.gov
    • +3more
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2023). Mule Deer Habitat Model for NSNF Connectivity - CDFW [ds1047] [Dataset]. https://data.ca.gov/dataset/mule-deer-habitat-model-for-nsnf-connectivity-cdfw-ds1047
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  16. Coast Horned Lizard Habitat Model for NSNF Connectivity - CDFW [ds1035]

    • catalog.data.gov
    • data.ca.gov
    • +4more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). Coast Horned Lizard Habitat Model for NSNF Connectivity - CDFW [ds1035] [Dataset]. https://catalog.data.gov/dataset/coast-horned-lizard-habitat-model-for-nsnf-connectivity-cdfw-ds1035-c5cff
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  17. California Thrasher Habitat Model for NSNF Connectivity - CDFW [ds1033]

    • gis.data.ca.gov
    • data.ca.gov
    • +4more
    Updated Jun 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2014). California Thrasher Habitat Model for NSNF Connectivity - CDFW [ds1033] [Dataset]. https://gis.data.ca.gov/datasets/CDFW::california-thrasher-habitat-model-for-nsnf-connectivity-cdfw-ds1033
    Explore at:
    Dataset updated
    Jun 17, 2014
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Area covered
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  18. Western Gray Squirrel Habitat Model for NSNF Connectivity - CDFW [ds1053]

    • data-cdfw.opendata.arcgis.com
    • data.cnra.ca.gov
    • +4more
    Updated Jun 17, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2014). Western Gray Squirrel Habitat Model for NSNF Connectivity - CDFW [ds1053] [Dataset]. https://data-cdfw.opendata.arcgis.com/content/CDFW::western-gray-squirrel-habitat-model-for-nsnf-connectivity-cdfw-ds1053
    Explore at:
    Dataset updated
    Jun 17, 2014
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Area covered
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  19. Limestone Salamander Habitat Model for NSNF Connectivity - CDFW [ds1044]

    • catalog.data.gov
    • data.cnra.ca.gov
    • +3more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). Limestone Salamander Habitat Model for NSNF Connectivity - CDFW [ds1044] [Dataset]. https://catalog.data.gov/dataset/limestone-salamander-habitat-model-for-nsnf-connectivity-cdfw-ds1044-d0c6b
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  20. California Kangaroo Rat Habitat Model for NSNF Connectivity - CDFW [ds1036]

    • data.ca.gov
    • data.cnra.ca.gov
    • +4more
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2023). California Kangaroo Rat Habitat Model for NSNF Connectivity - CDFW [ds1036] [Dataset]. https://data.ca.gov/dataset/california-kangaroo-rat-habitat-model-for-nsnf-connectivity-cdfw-ds1036
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Fish and Wildlife (2025). Mountain Quail Habitat Model for NSNF Connectivity - CDFW [ds1046] [Dataset]. https://catalog.data.gov/dataset/mountain-quail-habitat-model-for-nsnf-connectivity-cdfw-ds1046-14d8f
Organization logo

Mountain Quail Habitat Model for NSNF Connectivity - CDFW [ds1046]

Explore at:
Dataset updated
Jul 24, 2025
Dataset provided by
California Department of Fish and Wildlifehttps://wildlife.ca.gov/
Description

The Maxent modeling algorithm was used to build the species distribution model at 270 m spatial resolution using species occurrence points and environmental layers as predictors (Phillips et al. 2006). Species occurrence points were primarily obtained from CNDDB (California Natural Diversity Database) and other CDFW sources, GBIF (Global Biodiversity Information Facility), PRBO (Point Blue Conservation Science) and Arctos museum databases. Vegetation, distance to water, elevation, and bioclimatic variables (Franklin et al. 2013) were used as predictor variables. The models were run at 270 m spatial resolution with five replications using cross-validation as a method of sample evaluation. Cross-validation involved the partitioning of the sample data into n subsets, fitting the models to n-1subsets, and testing the model on the one subset not used in fitting the model. Initial model runs showed that our models converged around 2,000 iterations and for this reason we ran all models with 2,500 maximum iterations. Maxent was implemented in R using the ‘dismo''package (Hijmans et al. 2011). Model evaluation was carried out using the ‘PresenceAbsence''package in R (Freeman and Moisen 2008). We used AUC as a metric to evaluate model performance. The package also computes threshold values using several accuracy metrics to translate predicted probability maps into binary suitable and unsuitable habitats. We selected the MeanProb, a threshold set based on the mean predicted probability of species occurrences. The output from Maxent are grid datasets in a multiband ‘tif''format with one band for each replication. We averaged the five replicated maps and created a mean grid for each species. The grid was then symbolized to represent low (threshold-50), medium (50-75) and high (75-100) habitat suitability, with pixel values that are below the threshold excluded. Models were reviewed by CDFW species experts; please review the use limitations.For more information see the project report at [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=85358].

Search
Clear search
Close search
Google apps
Main menu