Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is used for the Seurat version of the batch correction and integration tutorial on the Galaxy Training Network.
The input data was provided by Seurat in the 'Integrative Analysis in Seurat v5' tutorial. The input dataset provided here has been filtered to include only cells for which nFeature_RNA > 1000.
The original dataset was published as: Ding, J., Adiconis, X., Simmons, S.K. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38, 737–746 (2020). https://doi.org/10.1038/s41587-020-0465-8.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Skeletal muscle repair is driven by the coordinated self-renewal and fusion of myogenic stem and progenitor cells. Single-cell gene expression analyses of myogenesis have been hampered by the poor sampling of rare and transient cell states that are critical for muscle repair, and do not inform the spatial context that is important for myogenic differentiation. Here, we demonstrate how large-scale integration of single-cell and spatial transcriptomic data can overcome these limitations. We created a single-cell transcriptomic dataset of mouse skeletal muscle by integration, consensus annotation, and analysis of 23 newly collected scRNAseq datasets and 88 publicly available single-cell (scRNAseq) and single-nucleus (snRNAseq) RNA-sequencing datasets. The resulting dataset includes more than 365,000 cells and spans a wide range of ages, injury, and repair conditions. Together, these data enabled identification of the predominant cell types in skeletal muscle, and resolved cell subtypes, including endothelial subtypes distinguished by vessel-type of origin, fibro/adipogenic progenitors defined by functional roles, and many distinct immune populations. The representation of different experimental conditions and the depth of transcriptome coverage enabled robust profiling of sparsely expressed genes. We built a densely sampled transcriptomic model of myogenesis, from stem cell quiescence to myofiber maturation and identified rare, transitional states of progenitor commitment and fusion that are poorly represented in individual datasets. We performed spatial RNA sequencing of mouse muscle at three time points after injury and used the integrated dataset as a reference to achieve a high-resolution, local deconvolution of cell subtypes. We also used the integrated dataset to explore ligand-receptor co-expression patterns and identify dynamic cell-cell interactions in muscle injury response. We provide a public web tool to enable interactive exploration and visualization of the data. Our work supports the utility of large-scale integration of single-cell transcriptomic data as a tool for biological discovery.
Methods Mice. The Cornell University Institutional Animal Care and Use Committee (IACUC) approved all animal protocols, and experiments were performed in compliance with its institutional guidelines. Adult C57BL/6J mice (mus musculus) were obtained from Jackson Laboratories (#000664; Bar Harbor, ME) and were used at 4-7 months of age. Aged C57BL/6J mice were obtained from the National Institute of Aging (NIA) Rodent Aging Colony and were used at 20 months of age. For new scRNAseq experiments, female mice were used in each experiment.
Mouse injuries and single-cell isolation. To induce muscle injury, both tibialis anterior (TA) muscles of old (20 months) C57BL/6J mice were injected with 10 µl of notexin (10 µg/ml; Latoxan; France). At 0, 1, 2, 3.5, 5, or 7 days post-injury (dpi), mice were sacrificed and TA muscles were collected and processed independently to generate single-cell suspensions. Muscles were digested with 8 mg/ml Collagenase D (Roche; Switzerland) and 10 U/ml Dispase II (Roche; Switzerland), followed by manual dissociation to generate cell suspensions. Cell suspensions were sequentially filtered through 100 and 40 μm filters (Corning Cellgro #431752 and #431750) to remove debris. Erythrocytes were removed through incubation in erythrocyte lysis buffer (IBI Scientific #89135-030).
Single-cell RNA-sequencing library preparation. After digestion, single-cell suspensions were washed and resuspended in 0.04% BSA in PBS at a concentration of 106 cells/ml. Cells were counted manually with a hemocytometer to determine their concentration. Single-cell RNA-sequencing libraries were prepared using the Chromium Single Cell 3’ reagent kit v3 (10x Genomics, PN-1000075; Pleasanton, CA) following the manufacturer’s protocol. Cells were diluted into the Chromium Single Cell A Chip to yield a recovery of 6,000 single-cell transcriptomes. After preparation, libraries were sequenced using on a NextSeq 500 (Illumina; San Diego, CA) using 75 cycle high output kits (Index 1 = 8, Read 1 = 26, and Read 2 = 58). Details on estimated sequencing saturation and the number of reads per sample are shown in Sup. Data 1.
Spatial RNA sequencing library preparation. Tibialis anterior muscles of adult (5 mo) C57BL6/J mice were injected with 10µl notexin (10 µg/ml) at 2, 5, and 7 days prior to collection. Upon collection, tibialis anterior muscles were isolated, embedded in OCT, and frozen fresh in liquid nitrogen. Spatially tagged cDNA libraries were built using the Visium Spatial Gene Expression 3’ Library Construction v1 Kit (10x Genomics, PN-1000187; Pleasanton, CA) (Fig. S7). Optimal tissue permeabilization time for 10 µm thick sections was found to be 15 minutes using the 10x Genomics Visium Tissue Optimization Kit (PN-1000193). H&E stained tissue sections were imaged using Zeiss PALM MicroBeam laser capture microdissection system and the images were stitched and processed using Fiji ImageJ software. cDNA libraries were sequenced on an Illumina NextSeq 500 using 150 cycle high output kits (Read 1=28bp, Read 2=120bp, Index 1=10bp, and Index 2=10bp). Frames around the capture area on the Visium slide were aligned manually and spots covering the tissue were selected using Loop Browser v4.0.0 software (10x Genomics). Sequencing data was then aligned to the mouse reference genome (mm10) using the spaceranger v1.0.0 pipeline to generate a feature-by-spot-barcode expression matrix (10x Genomics).
Download and alignment of single-cell RNA sequencing data. For all samples available via SRA, parallel-fastq-dump (github.com/rvalieris/parallel-fastq-dump) was used to download raw .fastq files. Samples which were only available as .bam files were converted to .fastq format using bamtofastq from 10x Genomics (github.com/10XGenomics/bamtofastq). Raw reads were aligned to the mm10 reference using cellranger (v3.1.0).
Preprocessing and batch correction of single-cell RNA sequencing datasets. First, ambient RNA signal was removed using the default SoupX (v1.4.5) workflow (autoEstCounts and adjustCounts; github.com/constantAmateur/SoupX). Samples were then preprocessed using the standard Seurat (v3.2.1) workflow (NormalizeData, ScaleData, FindVariableFeatures, RunPCA, FindNeighbors, FindClusters, and RunUMAP; github.com/satijalab/seurat). Cells with fewer than 750 features, fewer than 1000 transcripts, or more than 30% of unique transcripts derived from mitochondrial genes were removed. After preprocessing, DoubletFinder (v2.0) was used to identify putative doublets in each dataset, individually. BCmvn optimization was used for PK parameterization. Estimated doublet rates were computed by fitting the total number of cells after quality filtering to a linear regression of the expected doublet rates published in the 10x Chromium handbook. Estimated homotypic doublet rates were also accounted for using the modelHomotypic function. The default PN value (0.25) was used. Putative doublets were then removed from each individual dataset. After preprocessing and quality filtering, we merged the datasets and performed batch-correction with three tools, independently- Harmony (github.com/immunogenomics/harmony) (v1.0), Scanorama (github.com/brianhie/scanorama) (v1.3), and BBKNN (github.com/Teichlab/bbknn) (v1.3.12). We then used Seurat to process the integrated data. After initial integration, we removed the noisy cluster and re-integrated the data using each of the three batch-correction tools.
Cell type annotation. Cell types were determined for each integration method independently. For Harmony and Scanorama, dimensions accounting for 95% of the total variance were used to generate SNN graphs (Seurat::FindNeighbors). Louvain clustering was then performed on the output graphs (including the corrected graph output by BBKNN) using Seurat::FindClusters. A clustering resolution of 1.2 was used for Harmony (25 initial clusters), BBKNN (28 initial clusters), and Scanorama (38 initial clusters). Cell types were determined based on expression of canonical genes (Fig. S3). Clusters which had similar canonical marker gene expression patterns were merged.
Pseudotime workflow. Cells were subset based on the consensus cell types between all three integration methods. Harmony embedding values from the dimensions accounting for 95% of the total variance were used for further dimensional reduction with PHATE, using phateR (v1.0.4) (github.com/KrishnaswamyLab/phateR).
Deconvolution of spatial RNA sequencing spots. Spot deconvolution was performed using the deconvolution module in BayesPrism (previously known as “Tumor microEnvironment Deconvolution”, TED, v1.0; github.com/Danko-Lab/TED). First, myogenic cells were re-labeled, according to binning along the first PHATE dimension, as “Quiescent MuSCs” (bins 4-5), “Activated MuSCs” (bins 6-7), “Committed Myoblasts” (bins 8-10), and “Fusing Myoctes” (bins 11-18). Culture-associated muscle stem cells were ignored and myonuclei labels were retained as “Myonuclei (Type IIb)” and “Myonuclei (Type IIx)”. Next, highly and differentially expressed genes across the 25 groups of cells were identified with differential gene expression analysis using Seurat (FindAllMarkers, using Wilcoxon Rank Sum Test; results in Sup. Data 2). The resulting genes were filtered based on average log2-fold change (avg_logFC > 1) and the percentage of cells within the cluster which express each gene (pct.expressed > 0.5), yielding 1,069 genes. Mitochondrial and ribosomal protein genes were also removed from this list, in line with recommendations in the BayesPrism vignette. For each of the cell types, mean raw counts were calculated across the 1,069 genes to generate a gene expression profile for BayesPrism. Raw counts for each spot were then passed to the run.Ted function, using
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We have developed ProjecTILs, a computational approach to project new data sets into a reference map of T cells, enabling their direct comparison in a stable, annotated system of coordinates. Because new cells are embedded in the same space of the reference, ProjecTILs enables the classification of query cells into annotated, discrete states, but also over a continuous space of intermediate states. By comparing multiple samples over the same map, and across alternative embeddings, the method allows exploring the effect of cellular perturbations (e.g. as the result of therapy or genetic engineering) and identifying genetic programs significantly altered in the query compared to a control set or to the reference map. We illustrate the projection of several data sets from recent publications over two cross-study murine T cell reference atlases: the first describing tumor-infiltrating T lymphocytes (TILs), the second characterizing acute and chronic viral infection.To construct the reference TIL atlas, we obtained single-cell gene expression matrices from the following GEO entries: GSE124691, GSE116390, GSE121478, GSE86028; and entry E-MTAB-7919 from Array-Express. Data from GSE124691 contained samples from tumor and from tumor-draining lymph nodes, and were therefore treated as two separate datasets. For the TIL projection examples (OVA Tet+, miR-155 KO and Regnase-KO), we obtained the gene expression counts from entries GSE122713, GSE121478 and GSE137015, respectively.Prior to dataset integration, single-cell data from individual studies were filtered using TILPRED-1.0 (https://github.com/carmonalab/TILPRED), which removes cells not enriched in T cell markers (e.g. Cd2, Cd3d, Cd3e, Cd3g, Cd4, Cd8a, Cd8b1) and cells enriched in non T cell genes (e.g. Spi1, Fcer1g, Csf1r, Cd19). Dataset integration was performed using STACAS (https://github.com/carmonalab/STACAS), a batch-correction algorithm based on Seurat 3. For the TIL reference map, we specified 600 variable genes per dataset, excluding cell cycling genes, mitochondrial, ribosomal and non-coding genes, as well as genes expressed in less than 0.1% or more than 90% of the cells of a given dataset. For integration, a total of 800 variable genes were derived as the intersection of the 600 variable genes of individual datasets, prioritizing genes found in multiple datasets and, in case of draws, those derived from the largest datasets. We determined pairwise dataset anchors using STACAS with default parameters, and filtered anchors using an anchor score threshold of 0.8. Integration was performed using the IntegrateData function in Seurat3, providing the anchor set determined by STACAS, and a custom integration tree to initiate alignment from the largest and most heterogeneous datasets.Next, we performed unsupervised clustering of the integrated cell embeddings using the Shared Nearest Neighbor (SNN) clustering method implemented in Seurat 3 with parameters {resolution=0.6, reduction=”umap”, k.param=20}. We then manually annotated individual clusters (merging clusters when necessary) based on several criteria: i) average expression of key marker genes in individual clusters; ii) gradients of gene expression over the UMAP representation of the reference map; iii) gene-set enrichment analysis to determine over- and under- expressed genes per cluster using MAST. In order to have access to predictive methods for UMAP, we recomputed PCA and UMAP embeddings independently of Seurat3 using respectively the prcomp function from basic R package “stats”, and the “umap” R package (https://github.com/tkonopka/umap).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The power of single-cell RNA sequencing (scRNA-seq) in detecting cell heterogeneity or developmental process is becoming more and more evident every day. The granularity of this knowledge is further propelled when combining two batches of scRNA-seq into a single large dataset. This strategy is however hampered by technical differences between these batches. Typically, these batch effects are resolved by matching similar cells across the different batches. Current approaches, however, do not take into account that we can constrain this matching further as cells can also be matched on their cell type identity. We use an auto-encoder to embed two batches in the same space such that cells are matched. To accomplish this, we use a loss function that preserves: (1) cell-cell distances within each of the two batches, as well as (2) cell-cell distances between two batches when the cells are of the same cell-type. The cell-type guidance is unsupervised, i.e., a cell-type is defined as a cluster in the original batch. We evaluated the performance of our cluster-guided batch alignment (CBA) using pancreas and mouse cell atlas datasets, against six state-of-the-art single cell alignment methods: Seurat v3, BBKNN, Scanorama, Harmony, LIGER, and BERMUDA. Compared to other approaches, CBA preserves the cluster separation in the original datasets while still being able to align the two datasets. We confirm that this separation is biologically meaningful by identifying relevant differential expression of genes for these preserved clusters.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The distal region of the uterine (Fallopian) tube is commonly associated with high-grade serous carcinoma (HGSC), the predominant and most aggressive form of ovarian or extra-uterine cancer. Specific cell states and lineage dynamics of the adult tubal epithelium (TE) remain insufficiently understood, hindering efforts to determine the cell of origin for HGSC. Here, we report a comprehensive census of cell types and states of the mouse uterine tube. We show that distal TE cells expressing the stem/progenitor cell marker Slc1a3 can differentiate into both secretory (Ovgp1+) and ciliated (Fam183b+) cells. Inactivation of Trp53 and Rb1, whose pathways are commonly altered in HGSC, leads to elimination of targeted Slc1a3+ cells by apoptosis, thereby preventing their malignant transformation. In contrast, pre-ciliated cells (Krt5+, Prom1+, Trp73+) remain cancer-prone and give rise to serous tubal intraepithelial carcinomas and overt HGSC. These findings identify transitional pre-ciliated cells as a previously unrecognized cancer-prone cell state and point to pre-ciliation mechanisms as novel diagnostic and therapeutic targets. Methods
Single-cell RNA-sequencing library preparation For TE single cell expression and transcriptome analysis we isolated TE from C57BL6 adult estrous female mice. In 3 independent experiments a total of 62 uterine tubes were collected. Each uterine tube was placed in sterile PBS containing 100 IU ml-1 of penicillin and 100 µg ml-1 streptomycin (Corning, 30-002-Cl), and separated in distal and proximal regions. Tissues from the same region were combined in a 40 µl drop of the same PBS solution, cut open lengthwise, and minced into 1.5-2.5 mm pieces with 25G needles. Minced tissues were transferred with help of a sterile wide bore 200 µl pipette tip into a 1.8 ml cryo vial containing 1.2 ml A-mTE-D1 (300 IU ml-1 collagenase IV mixed with 100 IU ml-1 hyaluronidase; Stem Cell Technologies, 07912, in DMEM Ham’s F12, Hyclone, SH30023.FS). Tissues were incubated with loose cap for 1 h at 37°C in a 5% CO2 incubator. During the incubation tubes were taken out 4 times and tissues suspended with a wide bore 200 µl pipette tip. At the end of incubation, the tissue-cell suspension from each tube was transferred into 1 ml TrypLE (Invitrogen, 12604013) pre-warmed to 37°C, suspended 70 times with a 1000 µl pipette tip, 5 ml A-SM [DMEM Ham’s F12 containing 2% fetal bovine serum (FBS)] were added to the mix, and TE cells were pelleted by centrifugation 300x g for 10 minutes at 25°C. Pellets were then suspended with 1 ml pre-warmed to 37°C A-mTE-D2 (7 mg ml-1 Dispase II, Worthington NPRO2, and 10 µg ml-1 Deoxyribonuclease I, Stem Cell Technologies, 07900), and mixed 70 times with a 1000 µl pipette tip. 5 ml A-mTE-D2 was added and samples were passed through a 40 µm cell strainer, and pelleted by centrifugation at 300x g for 7 minutes at +4°C. Pellets were suspended in 100 µl microbeads per 107 total cells or fewer, and dead cells were removed with the Dead Cell Removal Kit (Miltenyi Biotec, 130-090-101) according to the manufacturer’s protocol. Pelleted live cell fractions were collected in 1.5 ml low binding centrifuge tubes, kept on ice, and suspended in ice cold 50 µl A-Ri-Buffer (5% FBS, 1% GlutaMAX-I, Invitrogen, 35050-079, 9 µM Y-27632, Millipore, 688000, and 100 IU ml-1 penicillin 100 μg ml-1 streptomycin in DMEM Ham’s F12). Cell aliquots were stained with trypan blue for live and dead cell calculation. Live cell preparations with a target cell recovery of 5,000-6,000 were loaded on Chromium controller (10X Genomics, Single Cell 3’ v2 chemistry) to perform single cell partitioning and barcoding using the microfluidic platform device. After preparation of barcoded, next-generation sequencing cDNA libraries samples were sequenced on Illumina NextSeq500 System.
Download and alignment of single-cell RNA sequencing data For sequence alignment, a custom reference for mm39 was built using the cellranger (v6.1.2, 10x Genomics) mkref function. The mm39.fa soft-masked assembly sequence and the mm39.ncbiRefSeq.gtf (release 109) genome annotation last updated 2020-10-27 were used to form the custom reference. The raw sequencing reads were aligned to the custom reference and quantified using the cellranger count function.
Preprocessing and batch correction All preprocessing and data analysis was conducted in R (v.4.1.1 (2021-08-10)). The cellranger count outs were first modified with the autoEstCont and adjustCounts functions from SoupX (v.1.6.1) to output a corrected matrix with the ambient RNA signal (soup) removed (https://github.com/constantAmateur/SoupX). To preprocess the corrected matrices, the Seurat (v.4.1.1) NormalizeData, FindVariableFeatures, ScaleData, RunPCA, FindNeighbors, and RunUMAP functions were used to create a Seurat object for each sample (https://github.com/satijalab/seurat). The number of principal components used to construct a shared nearest-neighbor graph were chosen to account for 95% of the total variance. To detect possible doublets, we used the package DoubletFinder (v.2.0.3) with inputs specific to each Seurat object. DoubletFinder creates artificial doublets and calculates the proportion of artificial k nearest neighbors (pANN) for each cell from a merged dataset of the artificial and actual data. To maximize DoubletFinder’s predictive power, mean-variance normalized bimodality coefficient (BCMVN) was used to determine the optimal pK value for each dataset. To establish a threshold for pANN values to distinguish between singlets and doublets, the estimated multiplet rates for each sample were calculated by interpolating between the target cell recovery values according to the 10x Chromium user manual. Homotypic doublets were identified using unannotated Seurat clusters in each dataset with the modelHomotypic function. After doublets were identified, all distal and proximal samples were merged separately. Cells with greater than 30% mitochondrial genes, cells with fewer than 750 nCount RNA, and cells with fewer than 200 nFeature RNA were removed from the merged datasets. To correct for any batch defects between sample runs, we used the harmony (v.0.1.0) integration method (github.com/immunogenomics/harmony).
Clustering parameters and annotations After merging the datasets and batch-correction, the dimensions reflecting 95% of the total variance were input into Seurat’s FindNeighbors function with a k.param of 70. Louvain clustering was then conducted using Seurat’s FindClusters with a resolution of 0.7. The resulting 19 clusters were annotated based on the expression of canonical genes and the results of differential gene expression (Wilcoxon Rank Sum test) analysis. One cluster expressing lymphatic and epithelial markers was omitted from later analysis as it only contained 2 cells suspected to be doublets. To better understand the epithelial populations, we reclustered 6 epithelial populations and reapplied harmony batch correction. The clustering parameters from FindNeighbors was a k.param of 50, and a resolution of 0.7 was used for FindClusters. The resulting 9 clusters within the epithelial subset were further annotated using differential expression analysis and canonical markers.
Pseudotime analysis Potential of heat diffusion for affinity-based transition embedding (PHATE) is dimensional reduction method to more accurately visualize continual progressions found in biological data 35. A modified version of Seurat (v4.1.1) was developed to include the ‘RunPHATE’ function for converting a Seurat Object to a PHATE embedding. This was built on the phateR package (v.1.0.7) (https://github.com/scottgigante/seurat/tree/patch/add-PHATE-again). In addition to PHATE, pseudotime values were calculated with Monocle3 (v.1.2.7), which computes trajectories with an origin set by the user 36,55–57. The origin was set to be a progenitor cell state confirmed with lineage tracing experiments. 35. Moon, K. R. et al. Visualizing structure and transitions in high-dimensional biological data. Nat Biotechnol 37, 1482–1492 (2019). doi:10.1038/s41587-019-0336-3 36. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019). doi:10.1038/s41586-019-0969-x 55. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32, 381–386 (2014). doi:10.1038/nbt.2859 56. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nature Methods 14, 309–315 (2017). doi:10.1038/nmeth.4150 57. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat Methods 14, 979–982 (2017). doi:10.1038/nmeth.4402
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset supporting the EPI-Clone manuscript: scRNA-seq profiling of hematopoietic stem and progenitor cells (HSPCs) was performed with the 3' 10x Genomics profiling. Three experiments are included: Two where HSCs were clonally labeled with the LARRY system, transplanted to recipient mouse and profiled 4-5 months later (post-transplant hematopoiesis), and one where HSPCs were profiled straight from an unperturbed mouse.Dataset is a seurat (v4) object with the following assays, reductions and metadata:ASSAYS:AB: Antibody expression dataRNA: RNA expression profilesintegrated: Integration of DNA methylation data performed across experimental batches with two batch correction methods: CCA (https://satijalab.org/seurat/reference/runcca) and harmony (https://portals.broadinstitute.org/harmony/articles/quickstart.html).DIMENSIONALITY REDUCTIONpca_cca: PCA performed on the integrated data (CCA integration)umap_cca: UMAP computed on the integrated data (CCA integration)umap_harmony: UMAP computed on the integrated data (Harmony integration)METADATAExperiment: The experiment that the cell is from, values are "LARRY main experiment", "LARRY replicate" and "Native hematopoiesis"ProcessingBatch: Experiments were processed in several batches.CellType: Cell type annotationLARRY: Error corrected LARRY barcodepercent.mt: percentage of mitochondrial DNAnCount_RNA: Read count for the RNA modalitynFeature_RNA: Number of RNAs with at least one readnCount_AB: Read count for the surface protein modalitynFeature_AB: Number of ABs with at least one read
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Using 23-months old mice of a inducible expression of human a-syn constructs based Parkinson mouse model, we produced a single nucleus RNA dataset by cutting 0mm Bregma to -5mm Bregma. The Chromium 3’ Single Cell Library Kit (10x Genomics) was used and Sequencing was performed on a NovaSeq 6000. From the same model we also used 20-months old mice with the Visium Spatial V1 platform (10x Genomics). Sequencing was performed on a NovaSeq 6000. Both were PE150.
snRNA pipeline: For the alignment of reads, a custom reference was created by adding the sequences of the V1S/SV2 transgene and the Camk2a promoter to the mm10 mouse reference genome. Count matrices generated by cellranger count 7.1 were loaded into an AnnData object and processed using the Python-based framework Scanpy 1.10.2. Integration with R, where needed, was facilitated through the rpy2 package. Raw count matrices were corrected for ambient RNA contamination using the SoupX 1.6.2. To remove potential doublets, scDblFinder 1.18.0 was employed with a fixed seed (123). Nuclei with nUMI and nGenes values exceeding three median absolute deviations (MADs) from the median were excluded. Genes detected in fewer than five nuclei across the dataset were excluded. The resulting dataset was normalized via scanpy.pp.normalize_total and scanpy.pp.log1p. Highly variable genes were identified using the function scanpy.pp.highly_variable_genes with the Seurat v3 flavor, selecting the top 4,000 genes. Dimensionality reduction was performed using principal component analysis (PCA) and batch effects were corrected using the python-implemented version of Harmony via the function scanpy.external.pp.harmony_integrate. Harmony embeddings were then used to construct a k-nearest neighbor (kNN) graph with scanpy.pp.neighbors. Clustering was performed using Leiden clustering with standard parameters via the function scanpy.tl.leiden. Clusters were annotated using literature, the mousebrain.org, and markers identified via the FindConservedMarkers function in Seurat. First, neurons and non-neuronal cells were distinguished using mainly canonical markers, such as but not limited to Rbfox3 (neurons), Mbp (oligodendrocytes), Acsbg1 (astrocytes), Pdgfra (oligodendrocyte precursor cells), Inpp5d (microglia), Colec12 (vascular cells), and Ttr (choroid plexus cells). Neurons were further classified into Vglut1 (Slc17a7), Vglut2 (Slc17a6), GABA (Gad2), cholinergic (Scube1), and dopaminergic (Th) neurons. Vglut1 and GABA neurons were further annotated into subtypes based on subclustering and FindConservedMarkers markers.
visium spatial pipeline: Sequences were fiducially aligned to spots using Loupe Browser ver. 8. All aligned sequences were mapped using spaceranger count 3.0.1 with a custom refence, which included sequences for the promotor and transgene (Camk2aTTA, V1S/SV2) to the mouse genome mm39. We filtered each sample of the Visium Spatial dataset based on the MAD filtering of number of reads (nUMI), number of genes (nGene), and percentage of mitochondrial genes (percent.mt). A spot was filtered out if it was outside of 3x MAD value in at least two metrics. Filtered samples were merged into one Seurat 5.1.0 object and we obtained normalized counts by the SCTransform function of Seurat. Integration was performed using Harmony 1.2.0 on 50 PCA embeddings and clustering was done using Leiden clustering based on 30 harmony embeddings. Integrated clusters were visualized using the UMAP method. Samples that were not successfully integrated (based on similarity measures of the harmony embeddings) and showed high percentage.mt or low nUMI levels compared to other samples, were removed from subsequent analysis. A final integration and clustering were performed after filtering. Regions were first annotated based on a 0.1 resolution clustering to get high level region annotation (Cortex, Hippocampus, Subcortex). Each high-level region was further annotated based on either more granular resolutions or subclustering. Marker genes from mousebrain.org and literature were used in combination with the Allen mouse brain atlas to obtain anatomically relevant annotations.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This R Seurat object (.rds) contains 4 assay slots (raw counts matrix, sample-dependent SCT-transformed values, post-integration SCT-corrected values, and the secondary integration SCT-corrected values) and some meta-data slots, including the dataset of origin (GEO sample accession number), the batch of origin (GEO series accession number), the method used (scRNA-seq vs snRNA-seq), the clusters, and the cell type labelling.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is used for the Seurat version of the batch correction and integration tutorial on the Galaxy Training Network.
The input data was provided by Seurat in the 'Integrative Analysis in Seurat v5' tutorial. The input dataset provided here has been filtered to include only cells for which nFeature_RNA > 1000.
The original dataset was published as: Ding, J., Adiconis, X., Simmons, S.K. et al. Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38, 737–746 (2020). https://doi.org/10.1038/s41587-020-0465-8.