U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This part of DS 781 presents data for the bathymetry map of the Offshore of Santa Barbara map area, California. The raster data file is included in "Bathymetry_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.E., Gutierrez, C.I., Wong, F.L., Yoklavich, M.M., Draut, A.E., Hart, P.E., and Conrad, J.E. (S.Y. Johnson and S.A. Cochran, eds.), 2013, California State Waters Map Series—Offshore of Santa Barbara, California: U.S. Geological Survey Scientific Investigations Map 3281, 45 p., 11 sheets, scale 1:24,000, https://doi.org/10.3133/sim3281. The bathymetry map of the Offshore of Santa Barbara map area, California, was generated from bathymetry da ...
This part of DS 781 presents data for the depth-to-transition (the depth to the bedrock at the Last Glacial Maximum) map of the Santa Barbara Channel, California, region. The raster data file is included in "DepthToTransition_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. As part of the USGS's California Seafloor Mapping Project, a 50-m-resolution grid of depth to the transgressive surface of the Last Glacial Maximum within California State Waters between Refugio Beach and the Hueneme Canyon and vicinity map area was generated from seismic-reflection data collected in 2007 and 2008 (USGS activities Z-3-07-SC and S-7-08-SC), supplemented with outcrop and geologic structure data from DS 781. The resulting sediment-thickness grid was subtracted from regional bathymetry to determine the depth to the last glacial maximum transitional surface. The resulting grid covers an area of approximately 600 sq km. Contours at 5-meter intervals were derived from this depth-to-transition grid and are also available in this data release.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Bathymetry data were collected by the U.S. Geological Survey in July 2008 in the northern Santa Barbara Channel in southern California. Data were collected aboard the R/V Parke Snavely, during USGS Field Activity S-9-08-SC, using a bathymetric sidescan system.
Data layer containing 10 meter bathymetric contours for the Channel Islands National Marine Sanctuary and Santa Barbara Bay. Data are derived from 1:250,000-scale National Oceanic and Atmospheric Administration (NOAA) charts and Monterey Bay Aquarium Research Institute (MBARI), Santa Barbara Bay Multibeam Data
This Data Release contains GIS data generated by USGS for use in a BOEM funded project to compare natural rockfish nursery habitat to habitat created by manmade structures in the eastern Santa Barbara Channel. The contours were created from published Data Elevation Models of Carignan and others (2009) and Dartnell and others (2012). Contours were generated using the ESRI Contour tool in spatial analyst. The contour interval is 10 meters. The contours were clipped to exclude areas outside the BOEM rockfish nurseries study area.
This report presents bathymetry and acoustic backscatter data collected in July 2008 in the northern Santa Barbara Channel, California, using a bathymetric sidescan system. The report also presents a summary of the mapping effort as well as Federal Geographic Data Committee (FGDC) metadata. This metadata file describes the bathymetry data.
For more information on the bathy surveys see http://walrus.wr.usgs.gov/infobank/s/s808sc/html/s-8-08-sc.meta.html -sf.meta.html
This data release presents data for 5-m resolution multibeam-bathymetry data of the northern Channel Islands region, southern California. The raster data files are included in "USGS_NChannelIslands_NorthArea_Bathy_5m.zip" and "USGS_NChannelIslands_SouthArea_Bathy_5m.zip," which are accessible from http://dx.doi.org/10.5066/F7S46Q1J. In 2004 The U.S. Geological Survey, Pacific Coastal and Marine Science Center collected multibeam-bathymetry and acoustic-backscatter data in the northern Channel Islands region, southern California. The region was mapped aboard the R/V Ewing using a Kongsberg Simrad EM-1002 multibeam echosounder. These data were previously published on-line at http://pubs.usgs.gov/of/2005/1153/#metadata. In this data release the data have been reprocessed to a finer spatial resolution (5-m versus 15-m) using more modern processing techniques. Due to the large file sizes the entire survey area is provided as two ASCIIRaster files(USGS_NChannelIslands_NorthArea_Bathy_5m.zip and USGS_NChannelIslands_SouthArea_Bathy_5m.zip).
This layer is a georeferenced raster image of the depth to transition (base) map of uppermost Pleistocene and Holocene sediments in the Santa Barbara Channel in California. As part of the USGS's California State Waters Mapping Project, a 20-m grid of depth to the transgressive surface of the last glacial maximum (LGM) was generated for the areas within the 3-nautical mile limit of the channel. The depth to base of the post-LGM unit was generated by adding sediment thickness data to water depths determined by multibeam bathymetry. The resulting grid covers an area of approximately 600 sq km. The depth to the transgressive surface of the LGM ranges between 12 and 190 meters. A map that shows these data is published in Scientific Investigations Map 3225, "California State Waters Map Series--Hueneme Canyon and Vicinity, California." This layer is part of USGS Data Series 781.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Santa Barbara Channel map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Santa Barbara Channel map area data layers. Data layers are symbolized as shown on the associated map sheets.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
This data set was created from processed multibeam sonar data acquired with a Reson SeaBat 7125 Multibeam Sonar system on the ROV Jason II during R/V Atlantis expedition AT18-11 conducted in 2011 (Chief Scientist: Dr. David Valentine).
These metadata describe bathymetry data collected during an October 2016 multibeam-echosounder survey of the northern portion of the Santa Barbara Channel, California. Data were collected and processed by the the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC) with fieldwork activity number 2016-666-FA. The bathymetry data are provided as a GeoTIFF image.
The Santa Barbara Channel study (SBC) is a closely articulated program involving both observational and computational techniques to obtain the best estimate of the physical oceanographic conditions in the Santa Barbara Channel. A comprehensive observational data set was acquired and a numerical simulation driven by the observational data was performed. The results yield detailed information on the Channel circulation and hydrography.
The funding agency was MMS (Department of Interior, Minerals Management Service); the contractors, Dyanlysis of Princeton and Science Applications International Corporation.
Regional Coverage
The CTD surveys were made within the Santa Barbara Channel and the Santa Maria Basin, primarily along cross-shelf transects. These transects were marked on either end by mooring locations. The moorings have four-letter names, in which the first two letters represent a nearby geographical landmark (eg. "GO" for the town of Goleta), and the last two letters indicate whether the mooring is inshore ("IN"), offshore ("OFF"), or in the middle ("MI"). The CTD transect names are taken from the first two letters of the appropriate moorings. See the table below for a list of CTD transects and the associated moorings.
Not all of the CTD casts were taken along these transects, particularly in the early days of the project. In addition, not all of the transects were occupied all of the time. The AN and SM transects were occupied most often. The transects in the Santa Maria Basin (AB, SA, and AR) were not occupied at all until later in the Study.
Data collection There are typically seven or eight casts per transect, with a spacing of about 3 to 5 km per cast. The casts go down to a maximum of about 500 m in the deepest part of the channel. Usually all of the transects in one particular cruise are traversed as close in time as possible, to preserve the synoptic nature of the dataset.
CTD Cast Data
CTD cast data available from this FTP site are organized by cruise and stored in CSA format. The cruise code is a four-digit number where the first two digits are year, and the last two digits are month. CSA format is an ASCII format in which the first five lines of the file contain the header information. Lines 1 through 3 contain the static variable names, units, and values; lines 4 and 5 contain the dynamic variable names and units. The rest of the file contains the dynamic variables in columns. The filenames use the following convention: the first four digits represent the cruise; the next letter distinguishes between the Neil Brown ("n") or the Ocean Sensors ("o") CTD instrument; and the last three digits represent the station number. For example, CTD cast #1 from Cruise 7 (cruise code 9408), taken with the Ocean Sensors CTD, would be called 9408o001.csa.
Towed CTD Data
The towed CTD data are also organized by cruise, and are in the "tow" subdirectories. These files are in CSA format, as described above, but the columns and variables contained in the files are different from the casts. The file naming conventions are also a bit different. The first four digits of the filename are again the cruise code, but the next set of letters represent the transect as discussed in the CTD introduction page. So a transect taken during cruise 9408 along the CA transect would be called 9408ca.csa. However, if the ship was steaming from one transect to another while the towed CTD data was being collected, that data filename will have four letters: two for the first transect, and two for the second. For example, a transect between the CA and AN lines would be called 9408caan.csa. Also, if data were taken on a particular transect more than once, it will have a sequence number (eg. 9408pa1.csa and 9408pa2.csa). As mentioned on the towed CTD info page, towed data are only available for cruises 9408, 9501, 9508, 9601, and 9603.
The Data Zoo
The Center for Coastal Studies (CCS) of the Scripps Institution of Oceanography, University of California, San Diego, has developed an on-line database of physical oceanographic data organized by experiment, and referred to as the 'Data Zoo.' The animals in this 'zoo' are the individual data sets, one of which is described above. The zoo is funded by the Mineral Management Service, Bureau of Land Management, Department of the Interior.
Proceed to the CTD FTP Directory: "http://ccs.ucsd.edu/zoo/sbcsmb/ctd/"
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Substrate was classified using the method of (Cochrane and Lafferty, 2002) for this study. Sea floor character derived from towed sidescan sonar data is available for the mainland coast within the study area from USGS online publications (Cochrane and others, 2003; Cochrane and others, 2005). The number of substrate classes was reduced because rugosity could not be derived for all areas due to the lack of bathymetry data for other data sets used in the study. References Cited: Cochrane, G.R., Nasby, N.M., Reid, J.A., Waltenberger, B., Lee, K.M., 2003, Nearshore Benthic Habitat GIS for the Channel Islands National Marine Sanctuary and Southern California State Fisheries Reserves Volume 1: U.S. Geological Survey Open-File Report 03-85, http://pubs.usgs.gov/of/2003/0085/. Cochrane, G.R., and Lafferty, K.D., 2002, Use of acoustic classification of sidescan sonar data for mapping benthic habitat in the Northern Channel Islands, California: Continental Shelf Research, v. 22, p. 683-690. ...
ArcInfo GRID format data generated from the 2004 multibeam sonar survey of the Northeastern Channel Islands, CA Region. The data include high- resolution bathymetry.
This part of DS 781 presents data for the map showing the predicted distribution of hydroids in the Santa Barbara Channel, California, region. The raster data file is included in "Hydroids_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. Presence-absence data of benthic macro-invertebrates and associated habitat (that is, sediment type and depth) were collected using a towed camera sled in selected areas along the coast off southern California during a ground-truth observation cruise conducted by the U.S. Geological Survey and NOAA National Marine Fisheries Service for the California Seafloor Mapping Program. Benthic community structure was determined from 35 video towed-camera transects within California's State Waters 3-nautical-mile limit in the Santa Barbara Channel. These transects produced a total of 923 10-second observations from the Offshore of Refugio Beach map area (34.5 degrees N., 120.1 degrees W.) to the Hueneme Canyon and vicinity map area (34.1 degrees N., 119.2 degrees W.). Presence-absence data were collected for 29 benthic, structure-forming nonmobile taxa. Using this information, generalized linear models (GLMs) were developed to predict the probability of occurrence of five commonly observed taxa (cup corals, hydroids, short and tall sea pens, and brittle stars in the sediment) in five map areas within the Santa Barbara Channel (SBC). A sixth map area (Offshore of Carpinteria) was not modeled owing to insufficient data. The analysis demonstrates that the community structure for the five map areas can be divided into three statistically distinct groups: (1) the Hueneme Canyon and vicinity and the Offshore of Ventura map areas; (2) the Offshore of Santa Barbara and the Offshore of Coal Oil Point map areas; and (3) the Offshore of Refugio Beach map area. These three distinct groups are the main reason that the probability for each taxa can be so dramatically different within one predictive-distribution map area. The five most frequently observed benthic macro-invertebrate taxa were selected for these predictive-distribution grids. Presence-absence data for each selected invertebrate were fit to specific generalized linear models using geographic location, depth, and seafloor character as covariates. Data for the covariates were informed by the bathymetry, seafloor character, and other ground-truth data from the different map areas of the Santa Barbara Channel region that are part of the California State Waters Map Series DS 781. Observations based on depth were limited by the capability of the towed camera sled; as a result, no predictions were made below depths of 150 m (in other words, on the continental slope or in Hueneme Canyon). Cup corals and hydroids had high predicted probabilities of occurrence in areas of hard substrata, whereas short and tall sea pens were predicted to occur in parts of the SBC that had unconsolidated and mixed sediment. Our model predicted that brittle stars would occur throughout the entire SBC on various bottom types.
This data set was acquired with a Reson SeaBat 7125 Multibeam Sonar system on the ROV Jason II during Atlantis expedition AT18-11 conducted in 2011 (Chief Scientist: Dr. David Valentine). These data files are of MBSystem-compatible format and include Acoustic Backscatter and Swath Bathymetry data and were processed at sea using the open source MB-System multibeam sonar processing software.
This data set was acquired with a Reson SeaBat 7125 Multibeam Sonar system on the AUV Sentry during Atlantis expedition AT15-53 conducted in 2009 (Chief Scientist: Dr. David Valentine). These data files are of MBSystem format and include Acoustic Backscatter and Swath Bathymetry data and were processed at sea using the open source MB-System multibeam sonar processing software.
This data release presents data for 5-m resolution acoustic-backscatter data of the northern Channel Islands region, southern California. The raster data files are included in "USGS_NChannelIslands_NorthArea_Backscatter_5m.zip" and "USGS_NChannelIslands_SouthArea_Backscatter_5m.zip," which are accessible from https://doi.org/10.5066/F7S46Q1J. In 2004 the U.S. Geological Survey, Pacific Coastal and Marine Science Center collected multibeam-bathymetry and acoustic-backscatter data in the northern Channel Islands region, southern California. The region was mapped aboard the R/V Ewing using a Kongsberg Simrad EM-1002 multibeam echosounder. These data were previously published on-line at http://pubs.usgs.gov/of/2005/1153/. In this data release the data have been reprocessed to a finer spatial resolution (5-m versus 15-m) using more modern processing techniques. Due to the large file sizes the entire survey area is provided as two ASCIIRaster files(USGS_NChannelIslands_NorthArea_Backscatter_5m.zip and USGS_NChannelIslands_SouthArea_Backscatter_5m.zip). A few survey line files in the northern region did not process and are missing from the ASCIIRaster file.
This part of DS 781 presents data for the map showing the predicted distribution of cup corals in the Santa Barbara Channel, California, region. The raster data file is included in "CupCorals_SantaBarbaraChannel.zip," which is accessible from https://pubs.usgs.gov/ds/781/SantaBarbaraChannel/data_catalog_SantaBarbaraChannel.html. Presence-absence data of benthic macro-invertebrates and associated habitat (that is, sediment type and depth) were collected using a towed camera sled in selected areas along the coast off southern California during a ground-truth observation cruise conducted by the U.S. Geological Survey and NOAA National Marine Fisheries Service for the California Seafloor Mapping Program. Benthic community structure was determined from 35 video towed-camera transects within California's State Waters 3-nautical-mile limit in the Santa Barbara Channel. These transects produced a total of 923 10-second observations from the Offshore of Refugio Beach map area (34.5 degrees N., 120.1 degrees W.) to the Hueneme Canyon and vicinity map area (34.1 degrees N., 119.2 degrees W.). Presence-absence data were collected for 29 benthic, structure-forming nonmobile taxa. Using this information, generalized linear models (GLMs) were developed to predict the probability of occurrence of five commonly observed taxa (cup corals, hydroids, short and tall sea pens, and brittle stars in the sediment) in five map areas within the Santa Barbara Channel (SBC). A sixth map area (Offshore of Carpinteria) was not modeled owing to insufficient data. The analysis demonstrates that the community structure for the five map areas can be divided into three statistically distinct groups: (1) the Hueneme Canyon and vicinity and the Offshore of Ventura map areas; (2) the Offshore of Santa Barbara and the Offshore of Coal Oil Point map areas; and (3) the Offshore of Refugio Beach map area. These three distinct groups are the main reason that the probability for each taxa can be so dramatically different within one predictive-distribution map area. The five most frequently observed benthic macro-invertebrate taxa were selected for these predictive-distribution grids. Presence-absence data for each selected invertebrate were fit to specific generalized linear models using geographic location, depth, and seafloor character as covariates. Data for the covariates were informed by the bathymetry, seafloor character, and other ground-truth data from the different map areas of the Santa Barbara Channel region that are part of the California State Waters Map Series DS 781. Observations based on depth were limited by the capability of the towed camera sled; as a result, no predictions were made below depths of 150 m (in other words, on the continental slope or in Hueneme Canyon). Cup corals and hydroids had high predicted probabilities of occurrence in areas of hard substrata, whereas short and tall sea pens were predicted to occur in parts of the SBC that had unconsolidated and mixed sediment. Our model predicted that brittle stars would occur throughout the entire SBC on various bottom types.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Abstract: This data set was acquired with a Reson SeaBat 7125 Multibeam Sonar system on the AUV Sentry during Atlantis expedition AT15-53 conducted in 2009 (Chief Scientist: Dr. David Valentine). These data files are of NetCDF Grid format and include gridded Bathymetry data and were processed after data collection.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This part of DS 781 presents data for the bathymetry map of the Offshore of Santa Barbara map area, California. The raster data file is included in "Bathymetry_OffshoreSantaBarbara.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSantaBarbara/data_catalog_OffshoreSantaBarbara.html. These data accompany the pamphlet and map sheets of Johnson, S.Y., Dartnell, P., Cochrane, G.R., Golden, N.E., Phillips, E.L., Ritchie, A.C., Greene, H.G., Krigsman, L.M., Kvitek, R.G., Dieter, B.E., Endris, C.A., Seitz, G.G., Sliter, R.W., Erdey, M.E., Gutierrez, C.I., Wong, F.L., Yoklavich, M.M., Draut, A.E., Hart, P.E., and Conrad, J.E. (S.Y. Johnson and S.A. Cochran, eds.), 2013, California State Waters Map Series—Offshore of Santa Barbara, California: U.S. Geological Survey Scientific Investigations Map 3281, 45 p., 11 sheets, scale 1:24,000, https://doi.org/10.3133/sim3281. The bathymetry map of the Offshore of Santa Barbara map area, California, was generated from bathymetry da ...