The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
Historic data are scarce and often only exists in aggregate tables. The key advantage of the IPUMS data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the IPUMS data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The IPUMS 1900 census data was collected in June 1900. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 22:51:40.810
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1900 households: This dataset includes all households from the 1900 US census.
IPUMS 1900 persons: This dataset includes all individuals from the 1910 US census.
IPUMS 1900 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1900 datasets.
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
Historic data are scarce and often only exists in aggregate tables. The key advantage of the IPUMS data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the IPUMS data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The IPUMS 1900 census data was collected in June 1900. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The categories for relationship to householder were revised in 2019. For more information see Revisions to the Relationship to Household item..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The categories for relationship to householder were revised in 2019. For more information see Revisions to the Relationship to Household item..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The SNAP participation rate shows how many households in Champaign County receive SNAP benefits, as a percentage of the total number of households in the county. The SNAP participation rate can serve as an indicator of poverty and need in the area, as income-based thresholds establish SNAP eligibility. However, not every household in poverty receives SNAP benefits, as can be determined by comparing the poverty rate between 2005 and 2023 and the percentage of households receiving SNAP benefits between 2005 and 2023.
The number of households and the percentage of households receiving SNAP benefits was higher in 2023 than in 2005, but we cannot establish a trend based on year-to-year changes, as in many years these changes are not statistically significant.
SNAP participation data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Receipt of Food Stamps/SNAP in the Past 12 Months by Presence of Children Under 18 Years for Households.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using data.census.gov; (26 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using data.census.gov; (5 October 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2201; generated by CCRPC staff; using American FactFinder; (16 March 2016).
VITAL SIGNS INDICATOR
Poverty (EQ5)
FULL MEASURE NAME
The share of the population living in households that earn less than 200 percent of the federal poverty limit
LAST UPDATED
January 2023
DESCRIPTION
Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.
DATA SOURCE
U.S Census Bureau: Decennial Census - http://www.nhgis.org
1980-2000
U.S. Census Bureau: American Community Survey - https://data.census.gov/
2007-2021
Form C17002
CONTACT INFORMATION
vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator)
The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.
For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).
For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.
For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.
American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.
To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can download data or view data tables on topics related to the labor force of the United States. Background Current Population Survey is a joint effort between the Bureau of Labor Statistics and the Census Bureau. It provides information and data on the labor force of the United States, such as: employment, unemployment, earnings, hours of work, school enrollment, health, employee benefits and income. The CPS is conducted monthly and has a sample of approximately 50,000 households. It is representative of the non-institutionalized US population. The sample provides estimates for the nation as a whole and serves as part of model-based estimates for individual states and other geographic areas. User Functionality Users can download data sets or view data tables on their topic of interest. Data can be organized by a variety of demographic variables, including: sex, age, race, marital status and educational attainment. Data is available on a national or state level. Data Notes The CPS is conducted monthly and has a sample of approximately 50,000 households. It is representative of the non-institutionalized US population. The sample provides estimates for th e nation as a whole and serves as part of model-based estimates for individual states and other geographic areas.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Since the 5-year data do not benefit from data quality filtering, comparisons are only made for populations of 5,000 or more..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..For more information on understanding Hispanic origin and race data, please see the America Counts: Stories Behind the Numbers article entitled, 2020 Census Illuminates Racial and Ethnic Composition of the Country, issued August 2021..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..An * indicates that the estimate is significantly different (at a 90% confidence level) than the estimate from the most current year. A "c" indicates the estimates for that year and the current year are both controlled; a statistical test is not appropriate. A blank indicates that the estimate is not significantly different from the estimate of the most current year, or that a test could not be done because one or both of the estimates is displayed as "-", "N", or "(X)", or the estimate ends with a "+" or "-". (For more information on these symbols, see the Explanation of Symbols.).Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A mar...
The 2020-2021 School Neighborhood Poverty Estimates are based on school locations from the 2020-2021 Common Core of Data (CCD) school file and income data from families with children ages 5 to 17 in the U.S. Census Bureau’s 2017-2021 American Community Survey (ACS) 5-year collection. The ACS is a continuous household survey that collects social, demographic, economic, and housing information from the population in the United States each month. The Census Bureau calculates the income-to-poverty ratio (IPR) based on money income reported for families relative to the poverty thresholds, which are determined based on the family size and structure. Noncash benefits (such as food stamps and housing subsidies) are excluded, as are capital gains and losses. The IPR is the percentage of family income that is above or below the federal poverty level. The IPR indicator ranges from 0 to a top-coded value of 999. A family with income at the poverty threshold has an IPR value of 100. The estimates in this file reflect the IPR for the neighborhoods around schools which may be different from the neighborhood conditions of students enrolled in schools.All information contained in this file is in the public _domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2020-12-17.Release Schedule:.The data in this file come from the 2017 Economic Census of Island Areas data files released on a flow basis from October 2019 through December 2020. For more information about economic census planned data product releases, see Economic Census: About: 2017 Release Schedules...Key Table Information:.Includes only establishments and firms with payroll..Data may be subject to employment- and/or sales-size minimums that vary by industry..The level of geographic detail covered varies by island. Refer to geographic area definitions for a detailed list of the geographies. Note that some tables include geography levels that only pertain to Puerto Rico..Some noise range columns are hidden..Totals may not sum due to rounding...Data Items and Other Identifying Records: .Number of establishments.Annual payroll ($1,000).First-quarter payroll ($1,000).Employers cost for legally required fringe benefits ($1,000).Voluntarily provided fringe benefits ($1,000).Number of employees.Number of production workers, average for year.Production workers wages ($1,000).Other employees (paid employees for pay period including March 12).Total payroll for other employees ($1,000).Value added ($1,000).Total cost of supplies and/or materials ($1,000).Total capital expenditures for buildings, structures, machinery, and equipment (new and used) ($1,000).Total rental payments and lease payments ($1,000).Sales, value of shipments, or revenue ($1,000).Range indicating percent of total annual payroll imputed.Range indicating percent of total employees imputed.Range indicating percent of total sales, value of shipments, or revenue imputed..Geography Coverage:.The data are shown for employer establishments and firms that vary by industry: . At the Territory, Metropolitan and Micropolitan Statistical Area, Combined Statistical Area, and Municipio level for Puerto Rico.For information about economic census geographies, including changes for 2017, see Economic Census: Economic Geographies...Industry Coverage:.The data are shown for Puerto Rico at the 2- through 5-digit NAICS code levels for the manufacturing industry. For information about NAICS, see Economic Census: Technical Documentation: Economic Census Code Lists...Footnotes:.Not applicable...FTP Download:.Download the entire table at: https://www2.census.gov/programs-surveys/economic-census/data/2017/sector00/IA1700IND11.zip..API Information:.Economic census data are housed in the Census Bureau API. For more information, see Explore Data: Developers: Available APIs: Economic Census..Methodology:.To maintain confidentiality, the U.S. Census Bureau suppresses data to protect the identity of any business or individual. The census results in this file contain sampling and/or nonsampling error. Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only...To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. For detailed information about the methods used to collect and produce statistics, including sampling, eligibility, questions, data collection and processing, data quality, review, weighting, estimation, coding operations, confidentiality protection, sampling error, nonsampling error, and more, see Economic Census: Technical Documentation: Methodology...Symbols:.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals.N - Not available or not comparable.S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page..X - Not applicable.A - Relative standard error of 100% or more.r - Revised.s - Relative standard error exceeds 40%.For a complete list of symbols, see Economic Census: Technical Documentation: Data Dictionary.. .Source:.U.S. Census Bureau, 2017 Economic Census.For information about the economic census, see Business and Economy: Economic Census...Contact Information:.U.S. Census Bureau.For general inquiries:. (800) 242-2184/ (301) 763-5154. ewd.outreach@census.gov.For specific data questions:. (800) 541-8345.For additional contacts, see Economic Census: About: Contact Us.
This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.Note: A new version of this data was released November 22, 2022 and is available here. There are significant changes, see the Justice40 Initiative criteria for details.This layer assesses and identifies communities that are disadvantaged according to Justice40 Initiative criteria. Census tracts in the U.S. and its territories that meet the Version 0.1 criteria are shaded in a semi-transparent blue to work with a variety of basemaps.Details of the assessment are provided in the popup for every census tract in the United States and its territories American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the U.S. Virgin Islands. This map uses 2010 census tracts from Version 0.1 of the source data downloaded May 30, 2022.Use this layer to help plan for grant applications, to perform spatial analysis, and to create informative dashboards and web applications. See this blog post for more information.From the source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40The layer has some transparency applied to allow it to work sufficiently well on top of many basemaps. For optimum map display where streets and labels are clearly shown on top of this layer, try one of the Human Geography basemaps and set transparency to 0%, as is done in this example web map.Browse the DataView the Data tab in the top right of this page to browse the data in a table and view the metadata available for each field, including field name, field alias, and a field description explaining what the field represents.
This statistic shows the usage frequency of Oral-B Advantage manual toothbrush in the United States in 2020. The data has been calculated by Statista based on the U.S. Census data and Simmons National Consumer Survey (NHCS). According to this statistic, 9.82 million Americans used Oral-B Advantage manual toothbrush 3 or more times on an average day in 2020.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Geographic areas are based on the geographic boundaries of the data year. Current year comparisons with past-year estimates are not re-tabulated to the current year's geographies; rather, the comparison is with the existing geography of each data year. Statistically significant change from prior years' estimates could be the result of changes in the geographic boundaries of an area and not necessarily the demographic, social, or economic characteristics. For more information on geographic changes, see: https://www.census.gov/programs-surveys/acs/guidance.html..Since the 5-year data do not benefit from data quality filtering, comparisons are only made for populations of 5,000 or more..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The definitions of the metropolitan and micropolitan statistical areas for the 2013 American Community Survey are based on the commuting patterns identified in the 2010 Census. Estimates prior to 2013 are based on the results of the 2000 Census. Statistically significant change from prior years' estimates could be the result of changes in the metropolitan geographic definitions and not necessarily the demographic, social or economic characteristic. For more information, see: Metropolitan and Micropolitan Statistical Areas..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico or U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..Fertility data are not available for certain geographic areas due to problems with data collection. See census.gov/programs-surveys/acs/technical-documentation/errata/119.html.The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; sa...
This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.
The key objective of every census is to count every person (man, woman, child) resident in the country on census night, and also collect information on assorted demographic (sex, age, marital status, citizenship) and socio-economic (education/qualifications; labour force and economic activity) information, as well as data pertinent to household and housing characteristics. This count provides a complete picture of the population make-up in each village and town, of each island and region, thus allowing for an assessment of demographic change over time.
The need for a national census became obvious to the Census Office (Bureau of Statistics) during 1997 when a memo was submitted to government officials proposing the need for a national census in an attempt to update old socio-economic figures. The then Acting Director of the Bureau of Statistics and his predecessor shared a similar view: that the 'heydays' and 'prosperity' were nearing their end. This may not have been apparent, as it took until almost mid-2001 for the current Acting Government Statistician to receive instructions to prepare planning for a national census targeted for 2002. It has been repeatedly said that for adequate planning at the national level, information about the characteristics of the society is required. With such information, potential impacts can be forecast and policies can be designed for the improvement and benefit of society. Without it, the people, national planners and leaders will inevitably face uncertainties.
National coverage as the Population Census covers the whole of Nauru.
The Census covers all individuals living in private and non-private dwellings and institutions.
Census/enumeration data [cen]
There is no sampling for the population census, full coverage.
Face-to-face [f2f]
The questionnaire was based on the Pacific Islands Model Population and Housing Census Form and the 1992 census, and comprised two parts: a set of household questions, asked only of the head of household, and an individual questionnaire, administered to each household member. Unlike the previous census, which consisted of a separate household form plus two separate individual forms for Nauruans and non-Nauruans, the 2 002 questionnaire consisted of only one form separated into different parts and sections. Instructions (and skips) were desi
The questionnaire cover recorded various identifiers: district name, enumeration area, house number, number of households (family units) residing, total number of residents, gender, and whether siblings of the head of the house were also recorded. The second page, representing a summary page, listed every individual residing within the house. This list was taken by the enumerator on the first visit, on the eve of census night. The first part of the census questionnaire focused on housing-related questions. It was administered only once in each household, with questions usually asked of the household head. The household form asked the same range of questions as those covered in the 1992 census, relating to type of housing, structure of outer walls, water supply sources and storage, toilet and cooking facilities, lighting, construction materials and subsistence-type activities. The second part of the census questionnaire focused on individual questions covering all household members. This section was based on the 1992 questions, with notable differences being the exclusion of income-level questions and the expansion of fertility and mortality questions. As in 1992, a problem emerged during questionnaire design regarding the question of who or what should determine a ‘Nauruan’. Unlike the 1992 census, where the emphasis was on blood ties, the issue of naturalisation and citizenship through the sale of passports seriously complicated matters in 2 002. To resolve this issue, it was decided to apply two filtering processes: Stage 1 identified persons with tribal heritage through manual editing, and Stage 2 identified persons of Nauruan nationality and citizenship through designed skips in the questionnaire that were incorporated in the data-processing programming.
The topics of questions for each of the parts include: - Person Particulars: - name - relationship - sex - ethnicity - religion - educational attainment - Economic Activity (to all persons 15 years and above): - economic activity - economic inactive - employment status - Fertility: - Fertility - Mortality - Labour Force Activity: - production of cash crops - fishing - own account businesses - handicrafts. - Disability: - type of disability - nature of disability - Household and housing: - electricity - water - tenure - lighting - cooking - sanitation - wealth ownerships
Coding, data entry and editing Coding took longer than expected when the Census Office found that more quality-control checks were required before coding could take place and that a large number of forms still required attention. While these quality-control checks were supposed to have been done by the supervisors in the field, the Census Office decided to review all census forms before commencing the coding. This process took approximately three months, before actual data processing could begin. The amount of additional time required to recheck the quality of every census form meant that data processing fell behind schedule. The Census Office had to improvise, with a little pressure from external stakeholders, and coding, in conjunction with data entry, began after recruiting two additional data entry personnel. All four Census Office staff became actively involved with coding, with one staff member alternating between coding and data entry, depending on which process was dropping behind schedule. In the end, the whole process took almost two months to complete. Prior to commencing data entry, the Census Office had to familiarise itself with the data entry processing system. For this purpose, SPC’s Demography/Population Programme was invited to lend assistance. Two office staff were appointed to work with Mr Arthur Jorari, SPC Population Specialist, who began by revising their skills for the data processing software that had been introduced by Dr McMurray. This training attachment took two weeks to complete. Data entry was undertaken using the 2 .3 version of the US Census Bureau’s census and surveying processing software, or CSPro2.3. This version was later updated to CSPro2.4, and all data were transferred accordingly. Technical assistance for data editing was provided by Mr Jorari over a two-week period. While most edits were completed during this period, it was discovered that some batches of questionnaires had not been entered during the initial data capturing. Therefore, batch-edit application had to be regenerated. This process was frequently interrupted by power outages prevailing at the time, which delayed data processing considerably and also required much longer periods of technical support to the two Nauru data processing staff via phone or email (when available).
Data was compared with Administrative records after the Census to review the quality and reliability of the data.
This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.This map shows Census tracts throughout the US based on if they are considered disadvantaged or partially disadvantaged according to Justice40 Initiative criteria. This is overlaid with the most recent American Community Survey (ACS) figures from the U.S. Census Bureau to communicate the predominant race that lives within these disadvantaged or partially disadvantaged tracts. Predominance helps us understand the group of population which has the largest count within an area. Colors are more transparent if the predominant race has a similar count to another race/ethnicity group. The colors on the map help us better understand the predominant race or ethnicity:Hispanic or LatinoWhite Alone, not HispanicBlack or African American Alone, not HispanicAsian Alone, not HispanicAmerican Indian and Alaska Native Alone, not HispanicTwo or more races, not HispanicNative Hawaiian and Other Pacific Islander, not HispanicSome other race, not HispanicSearch for any region, city, or neighborhood throughout the US, DC, and Puerto Rico to learn more about the population in the disadvantaged tracts. Click on any tract to learn more. Zoom to your area, filter to your county or state, and save this web map focused on your area to share the pattern with others. You can also use this web map within an ArcGIS app such as a dashboard, instant app, or story. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.Note: Justice40 tracts use 2010-based boundaries, while the most recent ACS figures are offered on 2020-based boundaries. When you click on an area, there will be multiple pop-ups returned due to the differences in these boundaries. From Justice40 data source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40
Household Income and Benefits data with margins of error for Alaskan Communities/Places and aggregation at Borough/CDA and State level for recent 5-year American Community Survey (ACS) intervals. The 5-year interval data sets are published approximately 1/2 a period later than the End Year listed - for instance the interval ending in 2019 is published in mid-2021.Source: US Census Bureau, American Community SurveyThis data has been visualized in a Geographic Information Systems (GIS) format and is provided as a service in the DCRA Information Portal by the Alaska Department of Commerce, Community, and Economic Development Division of Community and Regional Affairs (SOA DCCED DCRA), Research and Analysis section. SOA DCCED DCRA Research and Analysis is not the authoritative source for this data. For more information and for questions about this data, see: US Census Bureau, Household IncomeUSE CONSTRAINTS: The Alaska Department of Commerce, Community, and Economic Development (DCCED) provides the data in this application as a service to the public. DCCED makes no warranty, representation, or guarantee as to the content, accuracy, timeliness, or completeness of any of the data provided on this site. DCCED shall not be liable to the user for damages of any kind arising out of the use of data or information provided. DCCED is not the authoritative source for American Community Survey data, and any data or information provided by DCCED is provided "as is". Data or information provided by DCCED shall be used and relied upon only at the user's sole risk.For information about the American Community Survey, click here.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Geographic areas are based on the geographic boundaries of the data year. Current year comparisons with past-year estimates are not re-tabulated to the current year's geographies; rather, the comparison is with the existing geography of each data year. Statistically significant change from prior years' estimates could be the result of changes in the geographic boundaries of an area and not necessarily the demographic, social, or economic characteristics. For more information on geographic changes, see: https://www.census.gov/programs-surveys/acs/guidance.html..Since the 5-year data do not benefit from data quality filtering, comparisons are only made for populations of 5,000 or more..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The definitions of the metropolitan and micropolitan statistical areas for the 2013 American Community Survey are based on the commuting patterns identified in the 2010 Census. Estimates prior to 2013 are based on the results of the 2000 Census. Statistically significant change from prior years' estimates could be the result of changes in the metropolitan geographic definitions and not necessarily the demographic, social or economic characteristic. For more information, see: Metropolitan and Micropolitan Statistical Areas..For more information on understanding race and Hispanic origin data, please see the Census 2010 Brief entitled, Overview of Race and Hispanic Origin: 2010, issued March 2011. (pdf format).The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..An * indicates that the estimate is significantly different (at a 90% confidence level) than the estimate from the most current year. A "c" indicates the estimates for that year and the current year are both controlled; a statistical test is not appropriate. A blank indicates that the estimate is not significantly different from the estimate of the most current year, or that a test could not be done because one or both of the estimates is displayed as "-", "N", or "(X)", or the estimate ends with a "+" or "-". (For more information on these symbols, see the Explanation of Symbols below this table.).Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate ...
In 1800, the region of present-day Turkey had a population of approximately 9.8 million. Turkey’s population would grow steadily throughout the 1800s, growing to 14 million by the turn of the century. During this time, Turkey was the center of the Ottoman Empire, which also covered much of the Balkans, Arabia, and the African coast from Libya to Somalia. In the early 20th century, the Ottoman Empire's dissolution period began, characterized by political instability and a series of military defeats and coups. The empire was one of the defeated Central Powers of the First World War, in which it suffered approximately three million total fatalities. It is estimated that the majority of these deaths did not come directly from the war, but as a result of the government-orchestrated mass expulsion and genocide of non-Turks from within the Turkish borders, specifically Armenians, Assyrians, Greeks and Kurds; many ethnic Turks were simultaneously expelled from neighboring countries, namely Greece, which makes these events less-visible when examining annual data, although Turkey's total population did drop by one million between 1914 and 1924.
The Republic of Turkey Following the end of the Turkish War of Independence in 1923, and the establishment of the republic of Turkey, the population would begin to recover, tripling from just around 21 million in 1950 to over 63 million by the turn of the century. The new republic, led by Mustafa Kemal Atatürk, introduced sweeping, progressive reforms that modernized the country, particularly its healthcare and education systems. Turkey remained neutral throughout the Second World War, and became a member of NATO during the Cold War. The second half of the 1900s was marked with intermittent periods of political instability, and a number of military conflicts (namely, in Cyprus and Kurdistan). In spite of this, Turkey has generally been considered a developed country for most of this time, although its life expectancy and infant mortality rates have often been more in line with developing nations.
Modern Turkey In the past decade, Turkey's population growth has continued its rapid growth; while birth rates have declined, the mass migration of refugees to the country fleeing the Syrian Civil War has seen the population growth ramain high. This influx of refugees was seen as a stepping stone in Turkey's accession to the European Union, with whom it has been negotiating a potential membership since 2005. Accession to the EU would provide huge economic benefits to Turkey, however, political developments in recent years (particularly the 2016 coup) have seen these negotiations stall, as the EU has accused the Turkish government of committing widespread human rights violations, such as torture, political imprisonment and censorship of free speech. In 2020, Turkey's population is estimated to be over 84 million people, and is expected to exceed 100 million in the next two decades.
A Qualified Census Tract (QCT) is any census tract (or equivalent geographic area defined by the Census Bureau) in which at least 50% of households have an income less than 60% of the Area Median Gross Income (AMGI). HUD has defined 60% of AMGI as 120% of HUD's Very Low Income Limits (VLILs), which are based on 50% of area median family income, adjusted for high cost and low income areas.
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
Historic data are scarce and often only exists in aggregate tables. The key advantage of the IPUMS data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the IPUMS data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The IPUMS 1900 census data was collected in June 1900. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 22:51:40.810
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1900 households: This dataset includes all households from the 1900 US census.
IPUMS 1900 persons: This dataset includes all individuals from the 1910 US census.
IPUMS 1900 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1900 datasets.
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
Historic data are scarce and often only exists in aggregate tables. The key advantage of the IPUMS data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the IPUMS data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The IPUMS 1900 census data was collected in June 1900. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.