Facebook
TwitterBy Data Society [source]
Do you want to explore the complexities of Health Insurance Marketplace and uncover insights into plan rates, benefits, and networks? Look no further! With this dataset from the Centers for Medicare & Medicaid Services (CMS), you can investigate trends in plan rates, access coverage across states and zip codes, compare metal level plans (across years), as well as analyze benefit information all in one place.
We’ve provided six CSV files containing combined data from across all years: BenefitsCostSharing.csv provides details on benefits, BusinessRules.csv provides details about premium payment requirements for a plan or set of plans, Network.csv offers details about health plans’ networks of providers who offer services at different cost levels to members enrolled in a given plan or set of plans; PlanAttributes.csv gives attributes like age off dates for various plans; Rate.csv delivers information on rate changes; ServiceArea.csv reveals demographic characteristics related to each service area associated with a specific issuer and two CSV files that join data across years (Crosswalk2015 & Crosswalk2016).
So come on board and use your creativity to unlock the mysteries behind changes in benefits in relation to costs while exploring network providers within different regions!!!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the health insurance plans offered in the US Health Insurance Marketplace. It includes data on plan benefits, cost-sharing, networks, rates and service areas for different states. The data can be used to compare and analyze plan characteristics across different states and ages which will help guide users decision making when purchasing a health insurance plan.
To begin using the dataset, you should start by looking at the columns available. These include State, Dental Plan, Multistate Plan (2015 & 2016), Metal Level (2015 & 2016), Child/Adult Only (2015 & 2016), FIPS Code, Zip Code Crosswalk Level, Reason for Crosswalk, Multistate Plan Ageoff (2016 & 2015) and MetalLevel Ageoff (2016 & 2015). These columns provide important information on each plan that can be used to compare them across states or between years.
Using this data you can explore several interesting questions such as: How do benefit levels vary among states? Are there any differences in network providers between states? What factors influence plan rates?
In order to answer these questions you should join together relevant tables from across years using Crosswalk 2015/2016 CSV files then organize your data accordingly so that it is easier to visualize differences in features between plans sold across different states or years. Once the information is organized it might be helpful to use visualizations such as line graphs or bar charts to view comparison between feature values of two plans versus one another more clearly in order differentiate variations of plans among Consumers.
By doing this you can gain a better understanding of how certain factors may affect rate changes over time or how certain benefit levels might differ by state which will allow Consumers make an informed choice when selecting their next health insurance plan
- Analyzing the effectiveness of different plan benefits and how they affect premiums to determine a fair price point for different types of healthcare plans.
- Examining the variation in rates, benefits and coverage by state or zip code to identify potential trends or disparities in access to quality health care services across regions.
- Developing an algorithm that can predict premium prices based on certain factors such as age groups, type of plan (metal levels), multistate coverage, etc., to help consumers more easily understand the true cost of their health insurance plans before committing to purchase them
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit -...
Facebook
TwitterBy Data Society [source]
This fascinating dataset from the Centers for Medicare & Medicaid Services provides an in-depth analysis of health insurance plans offered throughout the United States. Exploring this data, you can gain insights into how plan rates and benefits vary across states, explore how plan benefits relate to plan rates, and investigate how plans vary across insurance network providers.
The top-level directory includes six CSV files which contain information about: BenefitsCostSharing.csv; BusinessRules.csv; Network.csv; PlanAttributes.csv; Rate.csv; and ServiceArea.csv - as well as two additional CSV files which facilitate joining data across years: Crosswalk2015.csv (joining 2014 and 2015 data) and Crosswalk2016
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This Kaggle dataset contains comprehensive data on US health insurance Marketplace plans. The data was obtained from the Centers for Medicare & Medicaid Services and contains information such as plan rates and benefits, metal levels, dental coverage, and child/adult-only coverages.
In order to use this dataset effectively, it is important to understand the different columns/variables that make up the dataset. The columns are state, dental plan, multistate plan (2015 and 2016), metal level (2014-2016), child/adult-only coverage (2014-2016), FIPS code (Federal Information Processing Standard code for the particular state), zipcode, crosswalk level (level of crosswalk between 2014-2016 data sets), reason for crosswalk parameter.
Using this dataset can help you answer interesting questions about US health insurance Marketplace plans across different variables such as state or rate information. It may also be interesting to compare certain variables over time with respect to how they affect certain types of people or how they differ across states or regions. Additionally, an analysis of the different price points associated with various kinds of coverage could provide insights into which kinds of plans are most attractive in various marketplaces based on cost savings alone
Once you have a good understanding of your data by studying individual parameters in depth across multiple states or regions you can begin looking at correlations between different parameters You can identify patterns that emerge around common characteristics or trends within areas or across markets over time when you have gathered sufficient historical data:
- Does higher out of pocket limits tend to come with higher premiums?
- Are there more multi-state markets in some states than others?
- What type of metal levels does each region prefer?
- Examining the impacts of age, metal levels and plan benefits on insurance rates in different states.
- Analyzing how dental plans vary across different states/regions and examining whether there are correlations between affordability and quality of care among plans with dental coverage options.
- Investigating how the Crosswalk level affects insurance rates by comparing insurance premiums from different metals level across states with varying Crosswalk Levels (e.g., how does a Bronze plan differ in cost for two states with differing Crosswalk Level 1 vs 2)
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Crosswalk2016.csv | Column name | Description | |:------------------------------|:------------------------------------------------------------------------------------------------------------------------------| | State | The state in which...
Facebook
TwitterIn order to facilitate public review and access, enrollment data published on the Open Data Portal is provided as promptly as possible after the end of each month or year, as applicable to the data set. Due to eligibility policies and operational processes, enrollment can vary slightly after publication. Please be aware of the point-in-time nature of the published data when comparing to other data published or shared by the Department of Social Services, as this data may vary slightly. As a general practice, for monthly data sets published on the Open Data Portal, DSS will continue to refresh the monthly enrollment data for three months, after which time it will remain static. For example, when March data is published the data in January and February will be refreshed. When April data is published, February and March data will be refreshed, but January will not change. This allows the Department to account for the most common enrollment variations in published data while also ensuring that data remains as stable as possible over time. In the event of a significant change in enrollment data, the Department may republish reports and will notate such republication dates and reasons accordingly. In March 2020, Connecticut opted to add a new Medicaid coverage group: the COVID-19 Testing Coverage for the Uninsured. Enrollment data on this limited-benefit Medicaid coverage group is being incorporated into Medicaid data effective January 1, 2021. Enrollment data for this coverage group prior to January 1, 2021, was listed under State Funded Medical. Effective January 1, 2021, this coverage group have been separated: (1) the COVID-19 Testing Coverage for the Uninsured is now G06-I and is now listed as a limited benefit plan that rolls up into “Program Name” of Medicaid and “Medical Benefit Plan” of HUSKY Limited Benefit; (2) the emergency medical coverage has been separated into G06-II as a limited benefit plan that rolls up into “Program Name” of Emergency Medical and “Medical Benefit Plan” of Other Medical. An historical accounting of enrollment of the specific coverage group starting in calendar year 2020 will also be published separately. This data represents number of active recipients who received benefits under a medical benefit plan in that calendar year and month. A recipient may have received benefits from multiple plans in the same month; if so that recipient will be included in multiple categories in this dataset (counted more than once.) 2021 is a partial year. For privacy considerations, a count of zero is used for counts less than five. NOTE: On April 22, 2019 the methodology for determining HUSKY A Newborn recipients changed, which caused an increase of recipients for that benefit starting in October 2016. We now count recipients recorded in the ImpaCT system as well as in the HIX system for that assistance type, instead using HIX exclusively. Also, corrections in the ImpaCT system for January and February 2019 caused the addition of around 2000 and 3000 recipients respectively, and the counts for many types of assistance (e.g. SNAP) were adjusted upward for those 2 months. Also, the methodology for determining the address of the recipients changed: 1. The address of a recipient in the ImpaCT system is now correctly determined specific to that month instead of using the address of the most recent month. This resulted in some shuffling of the recipients among townships starting in October 2016. 2. If, in a given month, a recipient has benefit records in both the HIX system and in the ImpaCT system, the address of the recipient is now calculated as follows to resolve conflicts: Use the residential address in ImpaCT if it exists, else use the mailing address in ImpaCT if it exists, else use the address in HIX. This resulted in a reduction in counts for most townships starting in March 2017 because a single address is now used instead of two when the systems do not agree.\ NOTE: On February 14 2019, the enrollment
Facebook
TwitterThe 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.
The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.
The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.
The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.
The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.
A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).
In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).
The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.
SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months
See details of the data quality tables in Appendix C of the survey final report.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Health Insurance Marketplace Public Use Files contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace.
To help get you started, here are some data exploration ideas:
See this forum thread for more ideas, and post there if you want to add your own ideas or answer some of the open questions!
This data was originally prepared and released by the Centers for Medicare & Medicaid Services (CMS). Please read the CMS Disclaimer-User Agreement before using this data.
Here, we've processed the data to facilitate analytics. This processed version has three components:
The original versions of the 2014, 2015, 2016 data are available in the "raw" directory of the download and "../input/raw" on Kaggle Scripts. Search for "dictionaries" on this page to find the data dictionaries describing the individual raw files.
In the top level directory of the download ("../input" on Kaggle Scripts), there are six CSV files that contain the combined at across all years:
Additionally, there are two CSV files that facilitate joining data across years:
The "database.sqlite" file contains tables corresponding to each of the processed CSV files.
The code to create the processed version of this data is available on GitHub.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Defined Benefit Pension Plans for Home Health Care Services, All Establishments, Employer Firms (DISCONTINUED) was 121.00000 Mil. of $ in January of 2017, according to the United States Federal Reserve. Historically, United States - Defined Benefit Pension Plans for Home Health Care Services, All Establishments, Employer Firms (DISCONTINUED) reached a record high of 134.00000 in January of 2012 and a record low of 109.00000 in January of 2016. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Defined Benefit Pension Plans for Home Health Care Services, All Establishments, Employer Firms (DISCONTINUED) - last updated from the United States Federal Reserve on November of 2025.
Facebook
TwitterThe 2015-16 Myanmar Demographic and Health Survey (2015-16 MDHS) is the first DHS survey to be conducted in Myanmar. A nationally representative sample of about 13,260 households was selected. All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Apart from the women’s survey, a men’s survey was also conducted at the same time in a subsample consisting of one household in every second household selected for the female survey. All men age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for the male survey.
In all of the selected households, parents or guardians of children age 6-59 months asked permission to collect a blood sample through a finger prick, also used to test for anemia. These children were also weighed and measured to obtain anthropometric indicators. Anemia testing and anthropometric measurements were also obtained for women age 15-49 in the sample households.
The primary objective of the 2015-16 MDHS was to provide up-to-date estimates of basic demographic and health indicators. Specifically, the survey collected information on fertility levels, marital status, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutrition, mother and child mortality and health, HIV/AIDS and other sexually transmitted infections (STIs), and other health-related issues, such as smoking and knowledge of tuberculosis.
The information collected through the 2015-16 MDHS is intended to assist policy makers and program managers in evaluating and designing programs and strategies for improving the health of the country’s population. Moreover, this survey has come at a beneficial time for Myanmar, as the results will be used to develop the next 5-year National Health Plan (2017-2021) and to update the national comprehensive development plan.
National coverage
The survey covered all de jure household members (usual residents), women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sample was based on the 2014 census frame, which is used to coordinate household-based surveys conducted in Myanmar, including the current 2015-16 MDHS. The master sample is a large, nationally representative sample consisting of 4,000 PSUs drawn from the entire census frame; these can be used for sub-selecting multi-stage household-based survey samples.
The 2015-16 MDHS followed a stratified two-stage sample design and was intended to allow estimates of key indicators at the national level, in urban and rural areas, and for each of the seven States and eight Regions of Myanmar. The first stage involved selecting sample points (clusters) consisting of EAs or ward/village tracts. A total of 442 clusters (123 urban and 319 rural) were selected from the master sample.
At the second stage, a fixed number of 30 households was selected from each of the selected clusters (a total of 13,260 households), using equal probability systematic sampling. For the clusters, which were completely enumerated during the population census, the census household listings were taken as the base and updated in the field by the household listing teams. These updated lists were used for selecting the sample households. For the clusters that were not enumerated or partially enumerated during the census, an independent household listing operation was carried out. Because of the non-proportional sample allocation, the sample was not a self-weighting sample. Weighting factors had to be calculated, added to the data file, and applied so that results are representative at the national as well as regional level.
All women age 15-49 who were either permanent residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. In half of the selected households (every second household), all men age 15-49 who were either residents or visitors who stayed in the household the night before the survey were eligible to be interviewed.
For further details on sample selection, see Appendix A of the final report.
During the course of the fieldwork, 4 clusters were identified as insecure and were replaced with other clusters in the vicinity. In addition, 1 urban cluster had to be dropped due to worsening security.
Face-to-face [f2f]
Three sets of questionnaires were used in the 2015-16 MDHS: a Household Questionnaire, a Woman’s Questionnaire, and a Man’s Questionnaire. These questionnaires, developed for the worldwide DHS program, were revised to accord with Myanmar culture as well as to reflect some country-specific health issues.
The 2015-16 MDHS used computer-assisted field editing (CAFE) procedures with tablet computers. Thus, data processing began simultaneously with the fieldwork. All completed questionnaires were entered into the tablets while in the field by the field editors after they edited them on paper. Entries were checked by the supervisors before the questionnaires were dispatched to the data processing center at the MoHS central office in Nay Pyi Taw. These completed questionnaires were reviewed and re-entered by 13 data processing personnel specially trained for this task. All data were thus entered twice (100 percent verification), once in the field by the field editors and then again in the data processing center in Nay Pyi Taw. Data were entered using the CSPro computer package. The operation included secondary editing, using CSPro software, to resolve computer-identified inconsistencies and to code open-ended questions. The concurrent processing of the data offered a distinct advantage, because it maximized the likelihood of the data being error-free and accurate. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. Inconsistencies were resolved by tallying with the paper questionnaire entries.
The secondary editing was implemented by four editors and was completed in the second week of July 2016. The final cleaning of the data set was carried out by the DHS Program data processing specialist by the end of July 2016.
The total number of households selected was 13,238, of which 12,780 households were occupied. Of those occupied, 12,500 households were interviewed, yielding a 98% response rate.
In the interviewed households, 13,454 women were identified as eligible for the individual Woman’s Questionnaire. Interviews were successfully completed with 12,885 women, yielding a 96% response rate. In the subsample of one-half of the households, 5,218 men were identified as eligible for individual interview. Interviews were completed for 4,737 men, with a 91% response rate.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2015-16 Myanmar Demographic and Health Survey (2015-16 MDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2015-16 MDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2015-16 MDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed by SAS programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: A more detailed description of estimates of
Facebook
TwitterACT Health Improvement programs - Fresh Tastes - Run or Walk to School - It’s Your Move
Primary Schools •“Fresh Tastes” provides a range of services to assist primary schools to improve children’s access to, knowledge of, uptake of healthy food and drink, and improves the school food and drink environment.
•“Ride or Walk to School” is a program promoting active travel to and from primary schools. •”Active Streets” is an extension of “Ride or Walk to School” to make the environment around schools safer to ride, walk, scooter or skate to and from school.
High Schools • “It’s Your Move (IYM)” is a high school program that engages students to create innovative solutions to improve school health.
http://www.health.act.gov.au/healthy-living/healthy-children-and-young-people
The data is presented by the ACT Government for the purpose of disseminating information for the benefit of the public. The ACT Government has taken great care to ensure the information in this report is as correct and accurate as possible. Whilst the information is considered to be true and correct at the date of publication, changes in circumstances after the time of publication may impact on the accuracy of the information. Differences in statistical methods and calculations, data updates and guidelines may result in the information contained in this report varying from previously published information.
Facebook
TwitterThis table contains data on access to parks measured as the percent of population within ½ a mile of a parks, beach, open space or coastline for California, its regions, counties, county subdivisions, cities, towns, and census tracts. More information on the data table and a data dictionary can be found in the Data and Resources section. As communities become increasingly more urban, parks and the protection of green and open spaces within cities increase in importance. Parks and natural areas buffer pollutants and contribute to the quality of life by providing communities with social and psychological benefits such as leisure, play, sports, and contact with nature. Parks are critical to human health by providing spaces for health and wellness activities. The access to parks table is part of a series of indicators in the Healthy Communities Data and Indicators Project (HCI) of the Office of Health Equity. The goal of HCI is to enhance public health by providing data, a standardized set of statistical measures, and tools that a broad array of sectors can use for planning healthy communities and evaluating the impact of plans, projects, policy, and environmental changes on community health. The creation of healthy social, economic, and physical environments that promote healthy behaviors and healthy outcomes requires coordination and collaboration across multiple sectors, including transportation, housing, education, agriculture and others. Statistical metrics, or indicators, are needed to help local, regional, and state public health and partner agencies assess community environments and plan for healthy communities that optimize public health. The format of the access to parks table is based on the standardized data format for all HCI indicators. As a result, this data table contains certain variables used in the HCI project (e.g., indicator ID, and indicator definition). Some of these variables may contain the same value for all observations.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterBy Data Society [source]
Do you want to explore the complexities of Health Insurance Marketplace and uncover insights into plan rates, benefits, and networks? Look no further! With this dataset from the Centers for Medicare & Medicaid Services (CMS), you can investigate trends in plan rates, access coverage across states and zip codes, compare metal level plans (across years), as well as analyze benefit information all in one place.
We’ve provided six CSV files containing combined data from across all years: BenefitsCostSharing.csv provides details on benefits, BusinessRules.csv provides details about premium payment requirements for a plan or set of plans, Network.csv offers details about health plans’ networks of providers who offer services at different cost levels to members enrolled in a given plan or set of plans; PlanAttributes.csv gives attributes like age off dates for various plans; Rate.csv delivers information on rate changes; ServiceArea.csv reveals demographic characteristics related to each service area associated with a specific issuer and two CSV files that join data across years (Crosswalk2015 & Crosswalk2016).
So come on board and use your creativity to unlock the mysteries behind changes in benefits in relation to costs while exploring network providers within different regions!!!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the health insurance plans offered in the US Health Insurance Marketplace. It includes data on plan benefits, cost-sharing, networks, rates and service areas for different states. The data can be used to compare and analyze plan characteristics across different states and ages which will help guide users decision making when purchasing a health insurance plan.
To begin using the dataset, you should start by looking at the columns available. These include State, Dental Plan, Multistate Plan (2015 & 2016), Metal Level (2015 & 2016), Child/Adult Only (2015 & 2016), FIPS Code, Zip Code Crosswalk Level, Reason for Crosswalk, Multistate Plan Ageoff (2016 & 2015) and MetalLevel Ageoff (2016 & 2015). These columns provide important information on each plan that can be used to compare them across states or between years.
Using this data you can explore several interesting questions such as: How do benefit levels vary among states? Are there any differences in network providers between states? What factors influence plan rates?
In order to answer these questions you should join together relevant tables from across years using Crosswalk 2015/2016 CSV files then organize your data accordingly so that it is easier to visualize differences in features between plans sold across different states or years. Once the information is organized it might be helpful to use visualizations such as line graphs or bar charts to view comparison between feature values of two plans versus one another more clearly in order differentiate variations of plans among Consumers.
By doing this you can gain a better understanding of how certain factors may affect rate changes over time or how certain benefit levels might differ by state which will allow Consumers make an informed choice when selecting their next health insurance plan
- Analyzing the effectiveness of different plan benefits and how they affect premiums to determine a fair price point for different types of healthcare plans.
- Examining the variation in rates, benefits and coverage by state or zip code to identify potential trends or disparities in access to quality health care services across regions.
- Developing an algorithm that can predict premium prices based on certain factors such as age groups, type of plan (metal levels), multistate coverage, etc., to help consumers more easily understand the true cost of their health insurance plans before committing to purchase them
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit -...