Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Berlin, Germany metro area from 1950 to 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Berlin, IL population pyramid, which represents the Berlin population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New Berlin population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of New Berlin. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 437 (60.69% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Berlin Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Berlin population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Berlin. The dataset can be utilized to understand the population distribution of Berlin by age. For example, using this dataset, we can identify the largest age group in Berlin.
Key observations
The largest age group in Berlin, IL was for the group of age 60 to 64 years years with a population of 24 (24.74%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Berlin, IL was the 5 to 9 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin Population by Age. You can refer the same here
In 1800, the region of Germany was not a single, unified nation, but a collection of decentralized, independent states, bound together as part of the Holy Roman Empire. This empire was dissolved, however, in 1806, during the Revolutionary and Napoleonic eras in Europe, and the German Confederation was established in 1815. Napoleonic reforms led to the abolition of serfdom, extension of voting rights to property-owners, and an overall increase in living standards. The population grew throughout the remainder of the century, as improvements in sanitation and medicine (namely, mandatory vaccination policies) saw child mortality rates fall in later decades. As Germany industrialized and the economy grew, so too did the argument for nationhood; calls for pan-Germanism (the unification of all German-speaking lands) grew more popular among the lower classes in the mid-1800s, especially following the revolutions of 1948-49. In contrast, industrialization and poor harvests also saw high unemployment in rural regions, which led to waves of mass migration, particularly to the U.S.. In 1886, the Austro-Prussian War united northern Germany under a new Confederation, while the remaining German states (excluding Austria and Switzerland) joined following the Franco-Prussian War in 1871; this established the German Empire, under the Prussian leadership of Emperor Wilhelm I and Chancellor Otto von Bismarck. 1871 to 1945 - Unification to the Second World War The first decades of unification saw Germany rise to become one of Europe's strongest and most advanced nations, and challenge other world powers on an international scale, establishing colonies in Africa and the Pacific. These endeavors were cut short, however, when the Austro-Hungarian heir apparent was assassinated in Sarajevo; Germany promised a "blank check" of support for Austria's retaliation, who subsequently declared war on Serbia and set the First World War in motion. Viewed as the strongest of the Central Powers, Germany mobilized over 11 million men throughout the war, and its army fought in all theaters. As the war progressed, both the military and civilian populations grew increasingly weakened due to malnutrition, as Germany's resources became stretched. By the war's end in 1918, Germany suffered over 2 million civilian and military deaths due to conflict, and several hundred thousand more during the accompanying influenza pandemic. Mass displacement and the restructuring of Europe's borders through the Treaty of Versailles saw the population drop by several million more.
Reparations and economic mismanagement also financially crippled Germany and led to bitter indignation among many Germans in the interwar period; something that was exploited by Adolf Hitler on his rise to power. Reckless printing of money caused hyperinflation in 1923, when the currency became so worthless that basic items were priced at trillions of Marks; the introduction of the Rentenmark then stabilized the economy before the Great Depression of 1929 sent it back into dramatic decline. When Hitler became Chancellor of Germany in 1933, the Nazi government disregarded the Treaty of Versailles' restrictions and Germany rose once more to become an emerging superpower. Hitler's desire for territorial expansion into eastern Europe and the creation of an ethnically-homogenous German empire then led to the invasion of Poland in 1939, which is considered the beginning of the Second World War in Europe. Again, almost every aspect of German life contributed to the war effort, and more than 13 million men were mobilized. After six years of war, and over seven million German deaths, the Axis powers were defeated and Germany was divided into four zones administered by France, the Soviet Union, the UK, and the U.S.. Mass displacement, shifting borders, and the relocation of peoples based on ethnicity also greatly affected the population during this time. 1945 to 2020 - Partition and Reunification In the late 1940s, cold war tensions led to two distinct states emerging in Germany; the Soviet-controlled east became the communist German Democratic Republic (DDR), and the three western zones merged to form the democratic Federal Republic of Germany. Additionally, Berlin was split in a similar fashion, although its location deep inside DDR territory created series of problems and opportunities for the those on either side. Life quickly changed depending on which side of the border one lived. Within a decade, rapid economic recovery saw West Germany become western Europe's strongest economy and a key international player. In the east, living standards were much lower, although unemployment was almost non-existent; internationally, East Germany was the strongest economy in the Eastern Bloc (after the USSR), though it eventually fell behind the West by the 1970s. The restriction of movement between the two states also led to labor shortages in t...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Berlin town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Berlin town. The dataset can be utilized to understand the population distribution of Berlin town by age. For example, using this dataset, we can identify the largest age group in Berlin town.
Key observations
The largest age group in Berlin Town, Green Lake County, Wisconsin was for the group of age 35 to 39 years years with a population of 143 (11.31%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Berlin Town, Green Lake County, Wisconsin was the 80 to 84 years years with a population of 6 (0.47%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin town Population by Age. You can refer the same here
WhatsApp was the leading actively used messenger service in Germany in 2021. Almost 84 percent of users confirmed this. While WhatsApp is foremost a messaging service, certain features indicate similarities with social media networks, as sharing and posting between users still occurs, just not necessarily on a publicly accessible website. Delivering the message For most of the population, modern life is unimaginable without messenger apps. Texting has become much more varied as a form of communication thanks to extended file and content sharing options within messages. There is no doubt that WhatsApp is a popular messaging app in Germany. In 2023, almost 85 percent of people were messaging on WhatsApp every day. By 2025, it is estimated that over 53 million people will be using WhatsApp in Germany, suggesting it's popularity as a messaging app will not diminish with time. Personal data While Facebook is extremely popular in many different countries, long-term questions and concerns from users continue to arise, with personal data security being one of the leading topics of discussion. In general, the there have been many breaches of personal data online. At the same time, social media continues to enjoy rising popularity and use among the German population, both in a private and professional context.
https://www.insightmarketreports.com/privacy-policyhttps://www.insightmarketreports.com/privacy-policy
The German student accommodation market, valued at €5.06 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 5.45% from 2025 to 2033. This growth is fueled by several key factors. Increasing student enrollment across German universities, particularly in high-demand programs and popular cities like Munich and Berlin, significantly drives demand. Furthermore, a rising preference for convenient, modern, and amenity-rich accommodations, especially among international students, is shaping the market. The shift towards online platforms for booking student housing simplifies the process and enhances transparency, contributing to market expansion. The market is segmented by price (economy, mid-range, luxury), rent type (basic, total), booking mode (online, offline), accommodation type (halls of residence, rented houses/rooms, private student accommodation), and location (city center, periphery). Competition is intensifying among established players like Iam Expat, Amber Student, and Unite Group, alongside smaller, localized providers. Growth is particularly strong in regions with high student populations such as North Rhine-Westphalia, Bavaria, and Baden-Württemberg, reflecting the concentration of major universities. The market, however, faces some challenges. Rising construction costs and land scarcity in major cities can constrain supply, potentially impacting affordability and accessibility. Regulatory changes concerning rental laws and building permits can also influence market dynamics. Despite these challenges, the long-term outlook remains positive, driven by sustained growth in the student population and evolving preferences for student housing. The increasing demand for high-quality, conveniently located accommodation will likely lead to further innovation and investment in the sector, particularly in sustainable and technologically advanced housing solutions. This will continue to reshape the competitive landscape and offer new opportunities for both established and emerging players in the German student accommodation market. Recent developments include: January 2023: International Campus acquired five student apartment blocks from Allianz Real Estate and CBRE Investment Management. This acquisition was one of the largest transactions of an International Campus in German Speaking region. The properties are in Berlin, Frankfurt, am Main, Hanover, and Vienna., November 2022, Berlin-based Catella Residential Investment Management GmbH (CRIM) sold two centrally located fully-let residential and student housing assets in Warsaw and Krakow in Poland to institutional investors in Austria and the Netherlands for more than USD 65.38 million on behalf of Munich-headquartered AIFM platform Catella Real Estate AG (CREAG).. Key drivers for this market are: Increase in Domestic Travel Driving the Market, Growing Tourist Footfall Driving the Market. Potential restraints include: Restrictions on Purchases of Number of Products, Customs Regulations and Taxation Policies. Notable trends are: Cost of Living In Germany Affecting Student Accommodation Market.
https://www.trueInsightsreports.com/privacy-policyhttps://www.trueInsightsreports.com/privacy-policy
The German residential real estate market, valued at €372.77 million in 2025, exhibits robust growth potential, projected to expand at a CAGR exceeding 3.06% from 2025 to 2033. This growth is fueled by several key drivers. A consistently strong economy, coupled with increasing urbanization and population density, particularly in major cities like Berlin, Munich, and Hamburg, creates significant demand for housing. Furthermore, government initiatives aimed at improving housing affordability and sustainable construction practices are contributing positively to market expansion. However, challenges remain. Limited land availability in desirable urban areas, coupled with rising construction costs and stringent building regulations, act as constraints on supply. The market segmentation reveals a preference for condominiums and apartments in urban centers, while villas and landed houses maintain a significant presence in suburban and rural areas. Competition among established players like Vonovia SE, Deutsche Wohnen SE, and LEG Immobilien SE, alongside a growing number of smaller developers, is intense. Regional variations are evident, with North Rhine-Westphalia, Bavaria, and Baden-Württemberg representing the most significant market shares due to their strong economies and population centers. The forecast period (2025-2033) anticipates a continued upward trajectory, although the pace of growth may fluctuate depending on macroeconomic conditions and policy interventions. The increasing adoption of smart home technologies and sustainable building materials will likely shape future market trends. The ongoing focus on improving energy efficiency in existing buildings presents further opportunities for market players. Successfully navigating the balance between meeting rising demand and mitigating the impact of regulatory hurdles and rising costs will be crucial for long-term market success. This requires developers to adopt innovative construction techniques and explore alternative housing solutions to address the ongoing affordability challenges. Key drivers for this market are: Strong Demand and Rising Construction Activities to Drive the Market, Rising House Prices in Germany Affecting Demand in the Market. Potential restraints include: Weak economic environment. Notable trends are: Strong Demand And Rising Construction Activities To Drive The Market.
London was by far the largest urban agglomeration in the United Kingdom in 2023, with an estimated population of 9.65 million people, more than three times as large as Manchester, the UK’s second-biggest urban agglomeration. The agglomerations of Birmingham and Leeds / Bradford had the third and fourth-largest populations respectively, while the biggest city in Scotland, Glasgow, was the fifth largest. Largest cities in Europe Two cities in Europe had larger urban areas than London, with the Russian capital Moscow having a population of almost 12.7 million. The city of Paris, located just over 200 miles away from London, was the second-largest city in Europe, with a population of more than 11.2 million people. Paris was followed by London in terms of population-size, and then by the Spanish cities of Madrid and Barcelona, at 6.75 million and 5.68 million people respectively. Russia's second-biggest city; St. Petersburg had a population of 5.56 million, followed by Rome at 4.3 million, and Berlin at 3.5 million. London’s population growth Throughout the 1980s, the population of London fluctuated from a high of 6.81 million people in 1981 to a low of 6.73 million inhabitants in 1988. During the 1990s, the population of London increased once again, growing from 6.8 million at the start of the decade to 7.15 million by 1999. London's population has continued to grow since the turn of the century, reaching a peak of 8.96 million people in 2019, and is forecast to reach 9.8 million by 2043.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the New Berlin, WI population pyramid, which represents the New Berlin population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New Berlin Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Berlin, Massachusetts population pyramid, which represents the Berlin town population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the East Berlin, PA population pyramid, which represents the East Berlin population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for East Berlin Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the East Berlin population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of East Berlin. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 904 (57.40% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for East Berlin Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Berlin by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Berlin. The dataset can be utilized to understand the population distribution of Berlin by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Berlin. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Berlin.
Key observations
Largest age group (population): Male # 55-59 years (551) | Female # 30-34 years (310). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Berlin by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Berlin across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.52% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Berlin by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Berlin across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 53.43% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Berlin by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Berlin across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.64% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Berlin by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Berlin across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 54.56% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Berlin town population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Berlin town. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,568 (54.62% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Berlin town Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Berlin, Germany metro area from 1950 to 2025.