50 datasets found
  1. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  2. Best states to make a living in the U.S. 2019

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Best states to make a living in the U.S. 2019 [Dataset]. https://www.statista.com/statistics/226377/most-affordable-states-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    United States
    Description

    This statistic shows the best states to make living in the United States in 2019. In 2019, Wyoming was ranked as the best state to make a living in the United States, with the cost of living index at **** value and the median income of ****** U.S. dollars.

  3. Annual cost of living in top 10 largest U.S. cities in 2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual cost of living in top 10 largest U.S. cities in 2024 [Dataset]. https://www.statista.com/statistics/643471/cost-of-living-in-10-largest-cities-us/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 29, 2024
    Area covered
    United States
    Description

    Of the most populous cities in the U.S., San Jose, California had the highest annual income requirement at ******* U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of ****** U.S. dollars in 2024.

  4. Typical price of single-family homes in the U.S. 2020-2024, by state

    • statista.com
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Typical price of single-family homes in the U.S. 2020-2024, by state [Dataset]. https://www.statista.com/statistics/1041708/typical-home-value-single-family-homes-usa-by-state/
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the United States, Hawaii was the state with the most expensive housing, with the typical value of single-family homes in the 35th to 65th percentile range exceeding ******* U.S. dollars. Unsurprisingly, Hawaii also ranked top as the state with the highest cost of living. Meanwhile, a property was the least expensive in West Virginia, where it cost under ******* U.S. dollars to buy the typical single-family home. Single-family home prices increased across most states in the United States between December 2023 and December 2024, except in Louisiana, Florida, and the District of Colombia. According to the Federal Housing Association, house appreciation in 13 states exceeded **** percent in 2023.

  5. Statewise Quality of Life Index 2024

    • kaggle.com
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hassan (2024). Statewise Quality of Life Index 2024 [Dataset]. https://www.kaggle.com/datasets/msjahid/statewise-quality-of-life-index-2024/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hassan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Quality of Life by State 2024

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1937611%2F82267b1a15f8669ec2a072972bebccb5%2Fquality-of-life-by-us-state.png?generation=1717697280376438&alt=media" alt="">

    This dataset provides insights into the quality of life across different states in the United States for the year 2024. Quality of life, encompassing aspects like comfort, health, and happiness, is evaluated through various metrics including affordability, economy, education, and safety. Dive into this dataset to understand how different states fare in terms of overall quality of life and its individual components.

    Columns Description

    • State: The name of the U.S. state.
    • QualityOfLifeTotalScore: The total score representing the overall quality of life for the respective state. This score is calculated based on various quality of life metrics.
    • QualityOfLifeQualityOfLife: The score representing the quality of life aspect for the respective state. This aspect may include subjective factors related to happiness, satisfaction, and overall well-being. Higher scores may indicate a higher level of subjective well-being, happiness, or overall satisfaction among residents. Lower scores could suggest lower levels of subjective well-being.
    • QualityOfLifeAffordability: The score representing the affordability aspect of the quality of life for the respective state. This aspect evaluates factors such as cost of living, housing affordability, and income levels. Higher scores typically indicate greater affordability of housing, cost of living, and basic necessities. Lower scores may suggest that these essentials are less accessible or more expensive for residents.
    • QualityOfLifeEconomy: The score representing the economic aspect of the quality of life for the respective state. This aspect assesses factors such as employment opportunities, economic growth, and income distribution. Higher scores may reflect a stronger economy with more job opportunities, higher incomes, and lower levels of poverty. Lower scores might indicate economic challenges such as unemployment or income inequality.
    • QualityOfLifeEducationAndHealth: The score representing the education and health aspect of the quality of life for the respective state. This aspect considers factors such as access to quality education, healthcare facilities, and overall public health indicators. Higher scores generally signify better access to quality education, healthcare services, and overall public health. Lower scores may indicate deficiencies in these areas, such as limited access to healthcare or lower educational attainment levels.
    • QualityOfLifeSafety: The score representing the safety aspect of the quality of life for the respective state. This aspect evaluates factors such as crime rates, public safety measures, and community well-being initiatives. Higher scores suggest lower crime rates, better community safety, and a higher sense of security among residents. Lower scores may indicate higher crime rates or concerns about safety.

    These descriptions provide an overview of what each column represents and the specific aspects of quality of life they assess for each U.S. state.

  6. Monthly residential utility costs, by state U.S. 2023

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly residential utility costs, by state U.S. 2023 [Dataset]. https://www.statista.com/statistics/1108684/monthly-utility-costs-usa-state/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    Alaska, Hawaii, and Connecticut were the states with the highest average monthly utility costs in the United States in 2023. Residents paid about ****** U.S. dollars for their electricity bills in Hawaii, while the average monthly bill for natural gas came to *** U.S. dollars. This was significantly higher than in any other state. Bigger homes have higher utility costs Despite regional variations, single-family homes in the United States have grown bigger in size since 1975. This trend also means that, unless homeowners invest in energy savings measures, they will have to pay more for their utility costs. Which are the most affordable states to live in? According to the cost of living index, the three most affordable states to live in are Mississippi, Kansas, and Oklahoma. At the other end of the scale are Hawaii, District of Columbia, and New York. The index is based on housing, utilities, grocery items, transportation, health care, and miscellaneous goods and services. To buy a median priced home in Kansas City, a prospective home buyer will have to earn an annual salary of about ****** U.S. dollars.

  7. V

    Quality-of-life-by-state

    • data.virginia.gov
    csv
    Updated Apr 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datathon 2024 (2024). Quality-of-life-by-state [Dataset]. https://data.virginia.gov/dataset/quality-of-life-by-state
    Explore at:
    csv(1738)Available download formats
    Dataset updated
    Apr 17, 2024
    Dataset authored and provided by
    Datathon 2024
    Description

    Quality of life is a measure of comfort, health, and happiness by a person or a group of people. Quality of life is determined by both material factors, such as income and housing, and broader considerations like health, education, and freedom. Each year, US & World News releases its “Best States to Live in” report, which ranks states on the quality of life each state provides its residents. In order to determine rankings, U.S. News & World Report considers a wide range of factors, including healthcare, education, economy, infrastructure, opportunity, fiscal stability, crime and corrections, and the natural environment. More information on these categories and what is measured in each can be found below:

    Healthcare includes access, quality, and affordability of healthcare, as well as health measurements, such as obesity rates and rates of smoking. Education measures how well public schools perform in terms of testing and graduation rates, as well as tuition costs associated with higher education and college debt load. Economy looks at GDP growth, migration to the state, and new business. Infrastructure includes transportation availability, road quality, communications, and internet access. Opportunity includes poverty rates, cost of living, housing costs and gender and racial equality. Fiscal Stability considers the health of the government's finances, including how well the state balances its budget. Crime and Corrections ranks a state’s public safety and measures prison systems and their populations. Natural Environment looks at the quality of air and water and exposure to pollution.

  8. U.S. state ranking of least-affordable child care for a school-aged child...

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. state ranking of least-affordable child care for a school-aged child 2019 [Dataset]. https://www.statista.com/statistics/254025/us-state-ranking-of-least-affordable-child-care-for-a-school-aged-child-in-a-center/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    United States
    Description

    In 2019, the state of California had the least affordable child care for school-aged children. The cost of care is presented as a percentage of state median income for a two-parent family. A two-parent family, living in the state, spent 19 percent of their median income for full-time care of a school-aged child in a child care center.

  9. t

    Top 5 Reasons Americans Moved in 2025

    • threemovers.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Three Movers (2025). Top 5 Reasons Americans Moved in 2025 [Dataset]. https://threemovers.com/us-moving-trends-2025/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Three Movers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Pie chart showing main motivations for moving, including housing, family, jobs, lifestyle, and cost of living.

  10. T

    United States Consumer Price Index (CPI)

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Consumer Price Index (CPI) [Dataset]. https://tradingeconomics.com/united-states/consumer-price-index-cpi
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - Jul 31, 2025
    Area covered
    United States
    Description

    Consumer Price Index CPI in the United States increased to 323.05 points in July from 322.56 points in June of 2025. This dataset provides the latest reported value for - United States Consumer Price Index (CPI) - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  11. h

    2017 Median Household Income in the United States

    • census.hcnj.us
    Updated Jan 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of X (2018). 2017 Median Household Income in the United States [Dataset]. https://census.hcnj.us/app/cityx::2017-median-household-income-in-the-united-states
    Explore at:
    Dataset updated
    Jan 24, 2018
    Dataset authored and provided by
    City of X
    Area covered
    Description

    This map shows the median household income in the U.S. in 2017 in a multiscale map by country, state, county, ZIP Code, tract, and block group. Median household income is estimated for 2017 in current dollars, including an adjustment for inflation or cost-of-living increases.The pop-up is configured to include the following information for each geography level:Median household incomeMedian household income by age of householderCount of households by income level (Householder age 15 to 24)Count of households by income level (Householder age 25 to 34)Count of households by income level (Householder age 35 to 44)Count of households by income level (Householder age 45 to 54)Count of households by income level (Householder age 55 to 64)Count of households by income level (Householder age 65 to 74)Count of households by income level (Householder age 75 plus)The data shown is from Esri's 2017 Updated Demographic estimates using Census 2010 geographies. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data. Esri's U.S. Updated Demographic (2017/2022) Data - Population, age, income, sex, race, home value, and marital status are among the variables included in the database. Each year, Esri's Data Development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of U.S. geographies.Data Note: The median household income value divides the distribution of household income into two equal parts. Pareto interpolation is used if the median falls in an income interval other than the first or last. For the lowest interval, <$10,000, linear interpolation is used. If the median falls in the upper income interval of $500,000+, it is represented by the value of $500,001.

  12. United States CSI: Personal: HH Fin'l Situation: 1Yr Ago: Worse: Prices are...

    • ceicdata.com
    Updated Aug 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). United States CSI: Personal: HH Fin'l Situation: 1Yr Ago: Worse: Prices are Higher [Dataset]. https://www.ceicdata.com/en/united-states/consumer-sentiment-index-personal-finance/csi-personal-hh-finl-situation-1yr-ago-worse-prices-are-higher
    Explore at:
    Dataset updated
    Aug 19, 2019
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 1, 2017 - Mar 1, 2018
    Area covered
    United States
    Description

    United States CSI: Personal: HH Fin'l Situation: 1Yr Ago: Worse: Prices are Higher data was reported at 8.000 % in May 2018. This stayed constant from the previous number of 8.000 % for Apr 2018. United States CSI: Personal: HH Fin'l Situation: 1Yr Ago: Worse: Prices are Higher data is updated monthly, averaging 13.000 % from Jan 1978 (Median) to May 2018, with 485 observations. The data reached an all-time high of 48.000 % in Jun 2008 and a record low of 4.000 % in Jan 2000. United States CSI: Personal: HH Fin'l Situation: 1Yr Ago: Worse: Prices are Higher data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H024: Consumer Sentiment Index: Personal Finance. The question was: We are interested in how people are getting along financially these days. Would you say that you (and your family living there) are better off or worse off financially than you were a year ago? Responses to the query 'Why do you say so?'

  13. State

    • atlas-connecteddmv.hub.arcgis.com
    Updated Aug 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). State [Dataset]. https://atlas-connecteddmv.hub.arcgis.com/datasets/esri::state-136
    Explore at:
    Dataset updated
    Aug 29, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The County Health Rankings, a collaboration between the Robert Wood Johnson Foundation and the University of Wisconsin Population Health Institute, measure the health of nearly all counties in the nation and rank them within states. This feature layer contains 2022 County Health Rankings data for nation, state, and county levels. The Rankings are compiled using county-level measures from a variety of national and state data sources. Some example measures are:adult smokingphysical inactivityflu vaccinationschild povertydriving alone to workTo see a full list of variables, as well as their definitions and descriptions, explore the Fields information by clicking the Data tab here in the Item Details. These measures are standardized and combined using scientifically-informed weights."By ranking the health of nearly every county in the nation, County Health Rankings & Roadmaps (CHR&R) illustrates how where we live affects how well and how long we live. CHR&R also shows what each of us can do to create healthier places to live, learn, work, and play – for everyone."Counties are ranked within their state on both health outcomes and health factors. Counties with a lower (better) health outcomes ranking than health factors ranking may see the health of their county decline in the future, as factors today can result in outcomes later. Conversely, counties with a lower (better) factors ranking than outcomes ranking may see the health of their county improve in the future.Some new variables in the 2022 Rankings data compared to previous versions:COVID-19 age-adjusted mortalitySchool segregationSchool funding adequacyGender pay gapChildcare cost burdenChildcare centersLiving wage (while the Living wage measure was introduced to the CHRR dataset in 2022 from the Living Wage Calculator, it is not available in the Living Atlas dataset and user’s interested in the most up to date living wage data can look that up on the Living Wage Calculator website).Data Processing Notes:Data downloaded April 2022Slight modifications made to the source data are as follows:The string " raw value" was removed from field labels/aliases so that auto-generated legends and pop-ups would only have the measure's name, not "(measure's name) raw value" and strings such as "(%)", "rate", or "per 100,000" were added depending on the type of measure.Percentage and Prevalence fields were multiplied by 100 to make them easier to work with in the map.Ratios were set to null if negative to make them easier to work with in the map.For demographic variables, the word "numerator" was removed and the word "population" was added where appropriate.Fields dropped from analytic data file: yearall fields ending in "_cihigh" and "_cilow"and any variables that are not listed in the sources and years documentation.Analytic data file was then merged with state-specific ranking files so that all county rankings and subrankings are included in this layer.2010 US boundaries were used as the data contain 2010 US census geographies, for a total of 3,142 counties.

  14. d

    Eurobarometer 83.3 (2015)

    • da-ra.de
    Updated Oct 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Commission, Brussels (2018). Eurobarometer 83.3 (2015) [Dataset]. http://doi.org/10.3886/ICPSR36667.v1
    Explore at:
    Dataset updated
    Oct 30, 2018
    Dataset provided by
    da|ra
    GESIS Data Archive
    Authors
    European Commission, Brussels
    Time period covered
    May 16, 2015 - May 23, 2015
    Area covered
    European Union
    Description

    Sampling Procedure Comment: Probability Sample: Multistage Stratified Random Sample

  15. w

    Living Standards Survey 2018-2019 - Nigeria

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Bureau of Statistics (NBS) (2021). Living Standards Survey 2018-2019 - Nigeria [Dataset]. https://microdata.worldbank.org/index.php/catalog/3827
    Explore at:
    Dataset updated
    Jan 12, 2021
    Dataset authored and provided by
    National Bureau of Statistics (NBS)
    Time period covered
    2018 - 2019
    Area covered
    Nigeria
    Description

    Abstract

    The main objectives of the 2018/19 NLSS are: i) to provide critical information for production of a wide range of socio-economic and demographic indicators, including for benchmarking and monitoring of SDGs; ii) to monitor progress in population’s welfare; iii) to provide statistical evidence and measure the impact on households of current and anticipated government policies. In addition, the 2018/19 NLSS could be utilized to improve other non-survey statistical information, e.g. to determine and calibrate the contribution of final consumption expenditures of households to GDP; to update the weights and determine the basket for the national Consumer Price Index (CPI); to improve the methodology and dissemination of micro-economic and welfare statistics in Nigeria.

    The 2018/19 NLSS collected a comprehensive and diverse set of socio-economic and demographic data pertaining to the basic needs and conditions under which households live on a day to day basis. The 2018/19 NLSS questionnaire includes wide-ranging modules, covering demographic indicators, education, health, labour, expenditures on food and non-food goods, non-farm enterprises, household assets and durables, access to safety nets, housing conditions, economic shocks, exposure to crime and farm production indicators.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals
    • Communities

    Universe

    The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The 2018/19 NLSS sample is designed to provide representative estimates for the 36 states and the Federal Capital Territory (FCT), Abuja. By extension. The sample is also representative at the national and zonal levels. Although the sample is not explicitly stratified by urban and rural areas, it is possible to obtain urban and rural estimates from the NLSS data at the national level. At all stages, the relative proportion of urban and rural EAs as has been maintained.

    Before designing the sample for the 2018/19 NLSS, the results from the 2009/10 HNLSS were analysed to extract the sampling properties (variance, design effect, etc.) and estimate the required sample size to reach a desired precision for poverty estimates in the 2018/19 NLSS.

    EA SELECTION: The sampling frame for the 2018/19 NLSS was based on the national master sample developed by the NBS, referred to as the NISH2 (Nigeria Integrated Survey of Households 2). This master sample was based on the enumeration areas (EAs) defined for the 2006 Nigeria Census Housing and Population conducted by National Population Commission (NPopC). The NISH2 was developed by the NBS to use as a frame for surveys with state-level domains. NISH2 EAs were drawn from another master sample that NBS developed for surveys with LGA-level domains (referred to as the “LGA master sample”). The NISH2 contains 200 EAs per state composed of 20 replicates of 10 sample EAs for each state, selected systematically from the full LGA master sample. Since the 2018/19 NLSS required domains at the state-level, the NISH2 served as the sampling frame for the survey.

    Since the NISH2 is composed of state-level replicates of 10 sample EAs, a total of 6 replicates were selected from the NISH2 for each state to provide a total sample of 60 EAs per state. The 6 replicates selected for the 2018/19 NLSS in each state were selected using random systematic sampling. This sampling procedure provides a similar distribution of the sample EAs within each state as if one systematic sample of 60 EAs had been selected directly from the census frame of EAs.

    A fresh listing of households was conducted in the EAs selected for the 2018/19 NLSS. Throughout the course of the listing, 139 of the selected EAs (or about 6%) were not able to be listed by the field teams. The primary reason the teams were not able to conduct the listing in these EAs was due to security issues in the country. The fieldwork period of the 2018/19 NLSS saw events related to the insurgency in the north east of the country, clashes between farmers and herdsman, and roving groups of bandits. These events made it impossible for the interviewers to visit the EAs in the villages and areas affected by these conflict events. In addition to security issues, some EAs had been demolished or abandoned since the 2006 census was conducted. In order to not compromise the sample size and thus the statistical power of the estimates, it was decided to replace these 139 EAs. Additional EAs from the same state and sector were randomly selected from the remaining NISH2 EAs to replace each EA that could not be listed by the field teams. This necessary exclusion of conflict affected areas implies that the sample is representative of areas of Nigeria that were accessible during the 2018/19 NLSS fieldwork period. The sample will not reflect conditions in areas that were undergoing conflict at that time. This compromise was necessary to ensure the safety of interviewers.

    HOUSEHOLD SELECTION: Following the listing, the 10 households to be interviewed were selected from the listed households. These households were selected systemically after sorting by the order in which the households were listed. This systematic sampling helped to ensure that the selected households were well dispersed across the EA and thereby limit the potential for clustering of the selected households within an EA.

    Occasionally, interviewers would encounter selected households that were not able to be interviewed (e.g. due to migration, refusal, etc.). In order to preserve the sample size and statistical power, households that could not be interviewed were replaced with an additional randomly selected household from the EA. Replacement households had to be requested by the field teams on a case-by-case basis and the replacement household was sent by the CAPI managers from NBS headquarters. Interviewers were required to submit a record for each household that was replaced, and justification given for their replacement. These replaced households are included in the disseminated data. However, replacements were relatively rare with only 2% of sampled households not able to be interviewed and replaced.

    Sampling deviation

    Although a sample was initially drawn for Borno state, the ongoing insurgency in the state presented severe challenges in conducting the survey there. The situation in the state made it impossible for the field teams to reach large areas of the state without compromising their safety. Given this limitation it was clear that a representative sample for Borno was not possible. However, it was decided to proceed with conducting the survey in areas that the teams could access in order to collect some information on the parts of the state that were accessible.

    The limited area that field staff could safely operate in in Borno necessitated an alternative sample selection process from the other states. The EA selection occurred in several stages. Initially, an attempt was made to limit the frame to selected LGAs that were considered accessible. However, after selection of the EAs from the identified LGAs, it was reported by the NBS listing teams that a large share of the selected EAs were not safe for them to visit. Therefore, an alternative approach was adopted that would better ensure the safety of the field team but compromise further the representativeness of the sample. First, the list of 788 EAs in the LGA master sample for Borno were reviewed by NBS staff in Borno and the EAs they deemed accessible were identified. The team identified 359 EAs (46%) that were accessible. These 359 EAs served as the frame for the Borno sample and 60 EAs were randomly selected from this frame. However, throughout the course of the NLSS fieldwork, additional insurgency related events occurred which resulted in 7 of the 60 EAs being inaccessible when they were to be visited. Unlike for the main sample, these EAs were not replaced. Therefore, 53 EAs were ultimately covered from the Borno sample. The listing and household selection process that followed was the same as for the rest of the states.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Two sets of questionnaires – household and community – were used to collect information in the NLSS2018/19. The Household Questionnaire was administered to all households in the sample. The Community Questionnaire was administered to the community to collect information on the socio-economic indicators of the enumeration areas where the sample households reside.

    Household Questionnaire: The Household Questionnaire provides information on demographics; education; health; labour; food and non-food expenditure; household nonfarm income-generating activities; food security and shocks; safety nets; housing conditions; assets; information and communication technology; agriculture and land tenure; and other sources of household income.

    Community Questionnaire: The Community Questionnaire solicits information on access to transported and infrastructure; community organizations; resource management; changes in the community; key events; community needs, actions and achievements; and local retail price information.

    Cleaning operations

    CAPI: The 2018/19 NLSS was conducted using the Survey Solutions Computer Assisted Person Interview (CAPI) platform. The Survey Solutions software was developed and maintained by the Development Economics Data Group (DECDG) at the World Bank. Each interviewer and supervisor was given a tablet

  16. D

    Manufactured Homes Modular Homes and Mobile Homes Sales Market Report |...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Manufactured Homes Modular Homes and Mobile Homes Sales Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-manufactured-homes-modular-homes-and-mobile-homes-sales-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Manufactured Homes, Modular Homes, and Mobile Homes Sales Market Outlook



    The manufactured homes, modular homes, and mobile homes sales market size is projected to witness robust growth, with a compound annual growth rate (CAGR) of 6.2% from 2024 to 2032. In 2023, the global market size was valued at approximately USD 25 billion and is anticipated to reach around USD 41.5 billion by 2032. This growth is driven by several factors including increasing demand for affordable housing solutions, advancements in construction technology, and rising awareness about the benefits of modular and manufactured homes.



    One of the primary growth factors for the market is the escalating demand for affordable housing. With urbanization on the rise and more people moving to cities, the need for cost-effective housing solutions has never been higher. Manufactured homes, modular homes, and mobile homes offer a lower-cost alternative to traditional housing, making them highly attractive to first-time homebuyers, retirees, and those looking to downsize. In addition, the quicker build times associated with these types of homes make them a viable solution to housing shortages prevalent in many urban areas.



    Technological advancements in construction methods have significantly contributed to the market's growth. Innovations such as improved materials, automation in manufacturing processes, and advanced design software have made it possible to produce high-quality manufactured and modular homes that meet stringent building codes and customer expectations. These advancements also contribute to reducing construction time and cost, thereby enhancing market attractiveness. Moreover, the ability to customize homes according to individual preferences and local building codes further fuels market demand.



    Environmental concerns and the push for sustainable living have also played a critical role in market expansion. Manufactured and modular homes are often more energy-efficient than traditional homes due to better insulation and the use of sustainable materials. These homes can be built to meet or exceed energy efficiency standards, which not only helps in reducing the carbon footprint but also significantly lowers utility bills for homeowners. This environmental advantage appeals to a growing segment of environmentally conscious consumers.



    The Single-family Detached Home Business is an emerging trend within the broader housing market, offering unique opportunities for entrepreneurs and investors. This segment focuses on standalone homes that are not attached to any other dwelling, providing privacy and space that many homeowners desire. As urban areas continue to expand, the demand for single-family detached homes is expected to rise, driven by families seeking more personal space and a connection to nature. This business model allows for customization and personalization, catering to the specific needs and preferences of individual buyers. Additionally, the flexibility in design and construction methods makes it possible to incorporate sustainable practices, appealing to environmentally conscious consumers. The growth of this sector is further supported by favorable government policies and incentives aimed at promoting homeownership and sustainable development.



    From a regional perspective, North America holds a significant share of the market, primarily due to the high rate of adoption of these housing types in the United States and Canada. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, driven by rapid urbanization, government initiatives promoting affordable housing, and increasing disposable incomes. Europe, Latin America, and the Middle East & Africa also present substantial growth opportunities, although the market dynamics vary significantly across these regions due to differences in economic conditions, regulatory frameworks, and consumer preferences.



    Product Type Analysis



    The product type segment of the manufactured homes, modular homes, and mobile homes sales market is categorized into single-wide homes, double-wide homes, and triple-wide homes. Single-wide homes are a popular choice among budget-conscious buyers due to their affordability and compact size. These homes are typically narrower and can be transported in one piece, making them an ideal option for individuals and small families looking for economical living solutions without compromising on essential amenities.

    <br

  17. Happiness benchmark in the United States in 2010, state-by-state comparison

    • statista.com
    Updated Jul 17, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Happiness benchmark in the United States in 2010, state-by-state comparison [Dataset]. https://www.statista.com/statistics/319651/happiness-benchmark-in-the-us/
    Explore at:
    Dataset updated
    Jul 17, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2010
    Area covered
    United States
    Description

    The statistic above provides information about the income level in the United States at which money won't make you happier. In 2010, a household in Hawaii needs to make about 122 thousand U.S. dollars per year to reach the happiness plateau, in which more income doesn't provide better emotional well-being. The state-by-state comparison takes into account the disparity in cost of living between the states.

  18. USA Flood Hazard Areas

    • gis-fema.hub.arcgis.com
    • hub.arcgis.com
    • +7more
    Updated Oct 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). USA Flood Hazard Areas [Dataset]. https://gis-fema.hub.arcgis.com/datasets/11955f1b47ec41a3af86650824e0c634
    Explore at:
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States,
    Description

    The Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities.Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: December 18, 2024This layer is derived from the December 18, 2024 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 88 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 88 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census' boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel.Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  19. U.S. real per capita GDP 2024, by state

    • statista.com
    Updated Jul 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. real per capita GDP 2024, by state [Dataset]. https://www.statista.com/statistics/248063/per-capita-us-real-gross-domestic-product-gdp-by-state/
    Explore at:
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    Out of all 50 states, New York had the highest per-capita real gross domestic product (GDP) in 2024, at 92,341 U.S. dollars, followed closely by Massachusetts. Mississippi had the lowest per-capita real GDP, at 41,603 U.S. dollars. While not a state, the District of Columbia had a per capita GDP of more than 210,780 U.S. dollars. What is real GDP? A country’s real GDP is a measure that shows the value of the goods and services produced by an economy and is adjusted for inflation. The real GDP of a country helps economists to see the health of a country’s economy and its standard of living. Downturns in GDP growth can indicate financial difficulties, such as the financial crisis of 2008 and 2009, when the U.S. GDP decreased by 2.5 percent. The COVID-19 pandemic had a significant impact on U.S. GDP, shrinking the economy 2.8 percent. The U.S. economy rebounded in 2021, however, growing by nearly six percent. Why real GDP per capita matters Real GDP per capita takes the GDP of a country, state, or metropolitan area and divides it by the number of people in that area. Some argue that per-capita GDP is more important than the GDP of a country, as it is a good indicator of whether or not the country’s population is getting wealthier, thus increasing the standard of living in that area. The best measure of standard of living when comparing across countries is thought to be GDP per capita at purchasing power parity (PPP) which uses the prices of specific goods to compare the absolute purchasing power of a countries currency.

  20. U.S. median household income 2023, by state

    • statista.com
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by state [Dataset]. https://www.statista.com/statistics/233170/median-household-income-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the real median household income in the state of Alabama was 60,660 U.S. dollars. The state with the highest median household income was Massachusetts, which was 106,500 U.S. dollars in 2023. The average median household income in the United States was at 80,610 U.S. dollars.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
Organization logo

Cost of living index in the U.S. 2024, by state

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
United States
Description

West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

Search
Clear search
Close search
Google apps
Main menu