Facebook
TwitterPortugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.
Facebook
TwitterThere is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**
Title: Location Affordability Index - NMCDC Copy
Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.
Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.
Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC
Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.
Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb
UID: 73
Data Requested: Family income spent on basic need
Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id
Date Acquired: Map copied on May 10, 2022
Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6
Tags: PENDING
Facebook
TwitterThe house price to income index in Europe declined in 13 of the 28 European countries in 2024, indicating that income grew faster than house prices. Portugal had the highest house price to income index ranking, with values exceeding ***** index points. Romania and Finland were on the other side of the spectrum, with less than 100 index points. The house price to income ratio is an indicator for the development of housing affordability across OECD countries and is calculated as the nominal house prices divided by nominal disposable income per head, with 2015 chosen as a base year. A ratio higher than 100 means that the nominal house price growth since 2015 has outpaced the nominal disposable income growth, and housing is therefore comparatively less affordable. In 2024, the OECD average stood at ***** index points.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The housing affordability measure illustrates the relationship between income and housing costs. A household that spends 30% or more of its collective monthly income to cover housing costs is considered to be “housing cost-burden[ed].”[1] Those spending between 30% and 49.9% of their monthly income are categorized as “moderately housing cost-burden[ed],” while those spending more than 50% are categorized as “severely housing cost-burden[ed].”[2]
How much a household spends on housing costs affects the household’s overall financial situation. More money spent on housing leaves less in the household budget for other needs, such as food, clothing, transportation, and medical care, as well as for incidental purchases and saving for the future.
The estimated housing costs as a percentage of household income are categorized by tenure: all households, those that own their housing unit, and those that rent their housing unit.
Throughout the period of analysis, the percentage of housing cost-burdened renter households in Champaign County was higher than the percentage of housing cost-burdened homeowner households in Champaign County. All three categories saw year-to-year fluctuations between 2005 and 2023, and none of the three show a consistent trend. However, all three categories were estimated to have a lower percentage of housing cost-burdened households in 2023 than in 2005.
Data on estimated housing costs as a percentage of monthly income was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Housing Tenure.
[1] Schwarz, M. and E. Watson. (2008). Who can afford to live in a home?: A look at data from the 2006 American Community Survey. U.S. Census Bureau.
[2] Ibid.
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (22 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (30 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using data.census.gov; (10 June 2021).;U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; 16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table B25106; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterThe Consumer Sentiment Index in the United States stood at 51 in November 2025. This reflected a drop of 2.6 point from the previous survey. Furthermore, this was its lowest level measured since June 2022. The index is normalized to a value of 100 in December 1964 and based on a monthly survey of consumers, conducted in the continental United States. It consists of about 50 core questions which cover consumers' assessments of their personal financial situation, their buying attitudes and overall economic conditions.
Facebook
TwitterTitle: Top Cities Worldwide: Quality of Life Index 2024 Subtitle: Ranking the World's Best Cities for Living Based on Key Metrics
Source of Data: The dataset was collected from Numbeo.com, a publicly accessible database that provides data on various quality-of-life indicators across cities worldwide. Numbeo aggregates user-contributed data validated through statistical methods to ensure reliability.
Data Collection Method: Data was acquired through web scraping. Care was taken to follow ethical web scraping practices, adhering to Numbeo’s terms of service and respecting their robots.txt file.
Columns Description:
The dataset includes the following columns:
Limitations and Considerations:
Usage Note: The dataset is intended for research and analytical purposes. Users should verify the data's applicability for their specific use cases, considering the limitations mentioned above.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
About This Dataset
This dataset is the original 70-city version used in my first published research paper: “A Data-Driven Survey on Cost of Living and Salary Affordability in Indian Cities” (IJRASET, 2025) Link: https://www.ijraset.com/best-journal/a-datadriven-survey-on-cost-of-livingsalary-affordability-in-indian-cities
It was created using web-scraping techniques from LivingCost.org and converted to INR using a consistent USD→INR exchange rate. This dataset forms the foundational base for affordability analysis, exploratory data analysis (EDA), and benchmarking cost-of-living patterns across India.
The dataset includes 70+ Indian cities, with fields covering living cost, rent, salary, affordability ratio (“months covered”), and derived financial indicators. It is clean, structured, and suitable for beginner to intermediate analytics projects.
Why This Dataset?
This dataset is ideal for:
EDA practice for college & school projects
Correlation and regression analysis
Basic ML tasks (predicting salary, affordability, rent, etc.)
Urban economics mini-projects
Dashboard creation (PowerBI, Tableau)
Data cleaning and preprocessing assignments
It is designed to be simple enough for students but structured enough for real-world analysis.
Features Included
Each row represents a city/state-level affordability profile with:
Cost of living (USD & INR)
Rent for a single person (USD & INR)
Monthly after-tax salary (USD & INR)
Income after rent
“Months Covered” affordability ratio
Source URLs for verification
Exchange rate used
This makes the dataset both transparent and reliable for academic usage.
Data Quality
Web-scraped directly from LivingCost.org
Cleaned and standardized
Currency converted uniformly
Non-city entries flagged
Fully reproducible from the source
This dataset served as the master input for my peer-reviewed paper and has been validated through statistical analysis.
Intended Audience
Students (school, undergraduate, postgraduate)
Data science beginners
Educators needing real datasets for teaching
Analysts looking for quick EDA practice
Researchers exploring affordability or urban economics
Note
A more comprehensive 200+ city enhanced dataset (used in my second paper) will be uploaded soon, including ICT metrics, GDP, and extended affordability indicators.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quality of Life Index (higher is better) is an estimation of overall quality of life by using an empirical formula which takes into account purchasing power index (higher is better), pollution index (lower is better), house price to income ratio (lower is better), cost of living index (lower is better), safety index (higher is better), health care index (higher is better), traffic commute time index (lower is better) and climate index (higher is better).
Current formula (written in Java programming language):
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 10 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
For details how purchasing power (including rent) index, pollution index, property price to income ratios, cost of living index, safety index, climate index, health index and traffic index are calculated please look up their respective pages.
Formulas used in the past
Formula used between June 2017 and Decembar 2017
We decided to decrease weight from costOfLivingIndex in this formula:
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 5 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for 2017 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
Quality of life index, link: https://www.numbeo.com/quality-of-life/indices_explained.jsp
Happiness store, link: https://www.kaggle.com/unsdsn/world-happiness/home
Facebook
TwitterIn 2025, the Consumer Price Index (CPI) for medical professional services in the United States was at 432.46, compared to the period from 1982 to 1984 (=100). The CPI for hospital services was at 1,102.12.
Facebook
TwitterIn 2024, the median household income in the United States was 83,730 U.S. dollars. This reflected an increase from the previous year. Household income The median household income depicts the income of households, including the income of the householder and all other individuals aged 15 years or over living in the household. Income includes wages and salaries, unemployment insurance, disability payments, child support payments received, regular rental receipts, as well as any personal business, investment, or other kinds of income received routinely. The median household income in the United States varied from state to state. In 2024, Massachusetts recorded the highest median household income in the country, at 113,900 U.S. dollars. On the other hand, Mississippi, recorded the lowest, at 55,980 U.S. dollars.Household income is also used to determine the poverty rate in the United States. In 2024, 10.6 percent of the U.S. population was living below the national poverty line. This was the lowest level since 2019. Similarly, the child poverty rate, which represents people under the age of 18 living in poverty, reached a three-decade low of 14.3 percent of the children. The state with the widest gap between the rich and the poor was New York, with a Gini coefficient score of 0.52 in 2024. The Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality, while a score of one indicates complete inequality.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Quality of Life indices for various countries around the globe, extracted from the Numbeo website. The data provides valuable metrics for comparing countries based on several aspects of living standards, which can assist in decisions such as choosing a place to live or analyzing global trends in quality of life.
OBS: The code to generate this dataset is presented on: https://www.kaggle.com/code/marcelobatalhah/web-scrapping-quality-of-life-index
Rank:
The global rank of the country based on its Quality of Life Index according to Year (1 = highest quality of life).
Country:
The name of the country.
Quality of Life Index:
A composite index that evaluates the overall quality of life in a country by combining other indices, such as Safety, Purchasing Power, and Health Care.
Purchasing Power Index:
Measures the relative purchasing power of the average consumer in a country compared to New York City (baseline = 100).
Safety Index:
Indicates the safety level of a country. A higher score suggests a safer environment.
Health Care Index:
Evaluates the quality and accessibility of healthcare in the country.
Cost of Living Index:
Measures the relative cost of living in a country compared to New York City (baseline = 100).
Property Price to Income Ratio:
Compares the affordability of real estate by dividing the average property price by the average income.
Traffic Commute Time Index:
Reflects the average time spent commuting due to traffic.
Pollution Index:
Rates the level of pollution in the country (air, water, etc.).
Climate Index:
Rates the favorability of the climate in the country (higher = more favorable).
Year:
Year when the metrics were extracted.
requests for retrieving webpage content.BeautifulSoup for parsing the HTML and extracting relevant information.pandas for organizing and storing the data in a structured format.Relocation Decision Making:
Use the dataset to compare countries and identify destinations with high quality of life, safety, and healthcare.
Global Analysis:
Perform exploratory data analysis (EDA) to identify trends and correlations across quality of life metrics.
Visualization:
Plot global maps, bar charts, or other visualizations to better understand the data.
Predictive Modeling:
Use this dataset as a base for machine learning tasks, like predicting Quality of Life Index based on other metrics.
Facebook
TwitterNew Zealand has one of the highest house price-to-income ratios in the world; nonetheless, since the first quarter of 2022, the country's house price-to-income ratio started to trend downward. In the first quarter of 2025, the ratio was *****, a decrease from the same quarter of the previous year. This ratio was calculated by dividing nominal house prices by nominal disposable income per head, and is considered a measure of affordability. Homeownership dream New Zealand has been in what is widely considered a housing bubble. The disproportionately large increases in residential house prices have placed the dream of owning their own home out of reach for many in the country. In 2025, around ** percent of residential properties were sold for over a million New Zealand dollars. The majority of mortgage lending in the country went to owner-occupiers where the property was not their first home, with first-home buyers often struggling to secure a loan. In general, only New Zealand residents and citizens can buy homes in the country to live in, with new regulations tightening investment activity in that market. Rent affordability Due to New Zealand's high property prices, many individuals and families are stuck renting for prolonged periods. However, with rent prices increasing across the country and the share of monthly income spent on rent trending upwards in tandem with a highly competitive rental market, renting is becoming a less appealing prospect for many. The Auckland and Bay of Plenty regions had the highest weekly rent prices across the country as of December 2024, with the Southland region recording the lowest rent prices per week.
Facebook
Twitterhttp://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
This table shows the average House Price/Earnings ratio, which is an important indicator of housing affordability. Ratios are calculated by dividing house price by the median earnings of a borough.
The Annual Survey of Hours and Earnings (ASHE) is based on a 1 per cent sample of employee jobs. Information on earnings and hours is obtained in confidence from employers. It does not cover the self-employed nor does it cover employees not paid during the reference period. Information is as at April each year. The statistics used are workplace based full-time individual earnings.
Land Registry housing data are for the first half of the year only, so that they comparable to the ASHE data which are as at April.
Prior to 2006 data are not available for Inner and Outer London.
The lowest 25 per cent of prices are below the lower quartile; the highest 75 per cent are above the lower quartile.
The "lower quartile" property price/income is determined by ranking all property prices/incomes in ascending order.
The 'median' property price/income is determined by ranking all property prices/incomes in ascending order. The point at which one half of the values are above and one half are below is the median.
Regional data has not been published by DCLG since 2012. Data for regions has been calculated by the GLA. Data for 2014 has been calculated by the GLA.
Link to DCLG Live Tables
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset shows Qatar’s score and ranking in the Quality of Life Index. The index uses an empirical formula that incorporates the following factors: purchasing power (higher is better), pollution (lower is better), house price-to-income ratio (lower is better), cost of living (lower is better), safety (higher is better), healthcare (higher is better), traffic commute time (lower is better), and climate (higher is better).
Facebook
TwitterLuxembourg had the highest average monthly salary of employees in the world in 2024 in terms of purchasing power parities (PPP), which takes the average cost of living in a country into account. Belgium followed in second, with the Netherlands in third.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Between 2019 and 2023, people living in households in the Asian and ‘Other’ ethnic groups were most likely to be in persistent low income before and after housing costs
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about Hong Kong SAR (China) Monthly Earnings
Facebook
TwitterBy Health [source]
This table provides an overview of the prevalence of household overcrowding and severe overcrowding in California from 2006-2010. Data on relative Standard Error (RSE), California decimal, and California Risk Ratio (RR) are also included. Residential crowding has serious health consequences, including increased risk of infection from communicable diseases, higher prevalence of respiratory ailments, and greater vulnerability to homelessness among the poor. This dataset can be used to identify demographics that may be disproportionately affected by crowded housing situation such as older immigrant communities, households with low income, renter-occupied dwellings and those that engage in doubling up. Furthermore, this data can help policy makers allocate resources to improve living conditions for affected individuals. An understanding of these household characteristics is essential for creating more equitable living conditions throughout California
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides detailed data on the populations experiencing overcrowding and severe overcrowding in California, its regions, counties, and cities/towns. It is essential to understand household crowding in order to better target governmental efforts towards the most affected communities. To use this dataset, you'll need to first become familiar with some of the key fields included and what they mean:
- ind_definition: This field provides a definition of the indicator which indicates whether we are looking at data for households experiencing overcrowding or severe overcrowding.
- reportyear: This field contains information about what year the report was published for.
- race_eth_code: This field contains a numerical code which describes race/ethnicity information for each area included in the dataset.
- race_eth_name: This field provides additional descriptive information about each area's racial/ethnic makeup based off of their race/ethnicity code in this database.
- income_level: This field displays income level measurements as specified by HUD categories such as Very Low Income (VLI) and Extremely Low Income (ELI).
tenure: Tenure is broken down into rental households vs owner occupied households - this is an important factor when considering household crowding as renters are more likely to experience it than people who own their home outright due to cost criteria so they may be more likely living with other people or living close quarters just to save money on rent payments upfront or security deposits. - crowding cat: Describes whether we are measuring overall household crowding or severe overcrowded houses according to HUD definitions (see above). - geotype & geotypevalue : These two fields contain specific geographic data for each area that can be used for mapping analysis etc.. The geotype contains information about what type of geography we're looking at i.e., county/city etc., while geotypevalue contains ID values associated with those types allowing further analysis based off these IDs if necessary! - countyfips & regionname provide useful labels when attempting geographical analysis; regionname will describe high level geography such as state boundaries etc., while countyfips allow us more precise locations within states thus enabling precision query analysis into localized areas using tools such as ArcGIS' statistical functions etc..
The totalhshlds column shows us exactly how many homes are present across California regions counties or cities whereas crowdedhshlds tells us
- Analyzing and mapping regional variations in overcrowding and how it is related to regional economic conditions.
- Identifying which race/ethnicities are most likely to experience overcrowding, and why this might be the case.
- Examining how overcrowding affects housing affordability in California, and adapting public policy to address the issue where needed
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even comm...
Facebook
TwitterIn 2023, the lowest 20 percent of income consumer units spent about 41.3 percent of their total expenditure on housing. Consumer units belonging to the highest 20 percent of income spent only 29.2 percent on housing. Additionally, those in the highest income quintile spent 17.7 percent of their total expenditure on personal insurance and pensions, while the lowest 20 percent spent only 2.1 percent.
Facebook
TwitterPortugal, Canada, and the United States were the countries with the highest house price to income ratio in 2024. In all three countries, the index exceeded 130 index points, while the average for all OECD countries stood at 116.2 index points. The index measures the development of housing affordability and is calculated by dividing nominal house price by nominal disposable income per head, with 2015 set as a base year when the index amounted to 100. An index value of 120, for example, would mean that house price growth has outpaced income growth by 20 percent since 2015. How have house prices worldwide changed since the COVID-19 pandemic? House prices started to rise gradually after the global financial crisis (2007–2008), but this trend accelerated with the pandemic. The countries with advanced economies, which usually have mature housing markets, experienced stronger growth than countries with emerging economies. Real house price growth (accounting for inflation) peaked in 2022 and has since lost some of the gain. Although, many countries experienced a decline in house prices, the global house price index shows that property prices in 2023 were still substantially higher than before COVID-19. Renting vs. buying In the past, house prices have grown faster than rents. However, the home affordability has been declining notably, with a direct impact on rental prices. As people struggle to buy a property of their own, they often turn to rental accommodation. This has resulted in a growing demand for rental apartments and soaring rental prices.