61 datasets found
  1. f

    Eight Americas: Investigating Mortality Disparities across Races, Counties,...

    • plos.figshare.com
    application/cdfv2
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christopher J. L Murray; Sandeep C Kulkarni; Catherine Michaud; Niels Tomijima; Maria T Bulzacchelli; Terrell J Iandiorio; Majid Ezzati (2023). Eight Americas: Investigating Mortality Disparities across Races, Counties, and Race-Counties in the United States [Dataset]. http://doi.org/10.1371/journal.pmed.0030260
    Explore at:
    application/cdfv2Available download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS Medicine
    Authors
    Christopher J. L Murray; Sandeep C Kulkarni; Catherine Michaud; Niels Tomijima; Maria T Bulzacchelli; Terrell J Iandiorio; Majid Ezzati
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Americas, United States
    Description

    BackgroundThe gap between the highest and lowest life expectancies for race-county combinations in the United States is over 35 y. We divided the race-county combinations of the US population into eight distinct groups, referred to as the “eight Americas,” to explore the causes of the disparities that can inform specific public health intervention policies and programs. Methods and FindingsThe eight Americas were defined based on race, location of the county of residence, population density, race-specific county-level per capita income, and cumulative homicide rate. Data sources for population and mortality figures were the Bureau of the Census and the National Center for Health Statistics. We estimated life expectancy, the risk of mortality from specific diseases, health insurance, and health-care utilization for the eight Americas. The life expectancy gap between the 3.4 million high-risk urban black males and the 5.6 million Asian females was 20.7 y in 2001. Within the sexes, the life expectancy gap between the best-off and the worst-off groups was 15.4 y for males (Asians versus high-risk urban blacks) and 12.8 y for females (Asians versus low-income southern rural blacks). Mortality disparities among the eight Americas were largest for young (15–44 y) and middle-aged (45–59 y) adults, especially for men. The disparities were caused primarily by a number of chronic diseases and injuries with well-established risk factors. Between 1982 and 2001, the ordering of life expectancy among the eight Americas and the absolute difference between the advantaged and disadvantaged groups remained largely unchanged. Self-reported health plan coverage was lowest for western Native Americans and low-income southern rural blacks. Crude self-reported health-care utilization, however, was slightly higher for the more disadvantaged populations. ConclusionsDisparities in mortality across the eight Americas, each consisting of millions or tens of millions of Americans, are enormous by all international standards. The observed disparities in life expectancy cannot be explained by race, income, or basic health-care access and utilization alone. Because policies aimed at reducing fundamental socioeconomic inequalities are currently practically absent in the US, health disparities will have to be at least partly addressed through public health strategies that reduce risk factors for chronic diseases and injuries.

  2. Cost of living index in the U.S. 2024, by state

    • statista.com
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cost of living index in the U.S. 2024, by state [Dataset]. https://www.statista.com/statistics/1240947/cost-of-living-index-usa-by-state/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    West Virginia and Kansas had the lowest cost of living across all U.S. states, with composite costs being half of those found in Hawaii. This was according to a composite index that compares prices for various goods and services on a state-by-state basis. In West Virginia, the cost of living index amounted to **** — well below the national benchmark of 100. Virginia— which had an index value of ***** — was only slightly above that benchmark. Expensive places to live included Hawaii, Massachusetts, and California. Housing costs in the U.S. Housing is usually the highest expense in a household’s budget. In 2023, the average house sold for approximately ******* U.S. dollars, but house prices in the Northeast and West regions were significantly higher. Conversely, the South had some of the least expensive housing. In West Virginia, Mississippi, and Louisiana, the median price of the typical single-family home was less than ******* U.S. dollars. That makes living expenses in these states significantly lower than in states such as Hawaii and California, where housing is much pricier. What other expenses affect the cost of living? Utility costs such as electricity, natural gas, water, and internet also influence the cost of living. In Alaska, Hawaii, and Connecticut, the average monthly utility cost exceeded *** U.S. dollars. That was because of the significantly higher prices for electricity and natural gas in these states.

  3. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  4. o

    US Cities: Demographics

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, json
    Updated Jul 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

  5. f

    20 Richest Counties in Florida

    • florida-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Florida [Dataset]. https://www.florida-demographics.com/counties_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions

    Area covered
    Florida
    Description

    A dataset listing Florida counties by population for 2024.

  6. G

    Life expectancy in South America | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jul 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2019). Life expectancy in South America | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/life_expectancy/South-America/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Jul 30, 2019
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2022
    Area covered
    South America, Americas, World
    Description

    The average for 2022 based on 12 countries was 72.9 years. The highest value was in Chile: 79.52 years and the lowest value was in Bolivia: 64.93 years. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.

  7. g

    20 Richest Counties in Georgia

    • georgia-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Georgia [Dataset]. https://www.georgia-demographics.com/counties_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions

    Area covered
    Georgia
    Description

    A dataset listing Georgia counties by population for 2024.

  8. v

    20 Richest Counties in Virginia

    • virginia-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). 20 Richest Counties in Virginia [Dataset]. https://www.virginia-demographics.com/richest_counties
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.virginia-demographics.com/terms_and_conditionshttps://www.virginia-demographics.com/terms_and_conditions

    Area covered
    Virginia
    Description

    A dataset listing the 20 richest counties in Virginia for 2024, including information on rank, county, population, average income, and median income.

  9. Annual cost of living in top 10 largest U.S. cities in 2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual cost of living in top 10 largest U.S. cities in 2024 [Dataset]. https://www.statista.com/statistics/643471/cost-of-living-in-10-largest-cities-us/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 29, 2024
    Area covered
    United States
    Description

    Of the most populous cities in the U.S., San Jose, California had the highest annual income requirement at ******* U.S. dollars annually for homeowners to have an affordable and comfortable life in 2024. This can be compared to Houston, Texas, where homeowners needed an annual income of ****** U.S. dollars in 2024.

  10. d

    Real Estate Data | Property Listing, Sold Properties, Rankings, Agent...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr, Real Estate Data | Property Listing, Sold Properties, Rankings, Agent Datasets | Global Coverage | For Competitive Property Pricing and Investment [Dataset]. https://datarade.ai/data-products/real-estate-property-data-grepsr-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Grepsr
    Area covered
    Kazakhstan, Malaysia, South Sudan, Tonga, Congo (Democratic Republic of the), Iraq, Holy See, Kuwait, Spain, Australia
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  11. v

    Virginia Cities by Population

    • virginia-demographics.com
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Virginia Cities by Population [Dataset]. https://www.virginia-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.virginia-demographics.com/terms_and_conditionshttps://www.virginia-demographics.com/terms_and_conditions

    Area covered
    Virginia
    Description

    A dataset listing Virginia cities by population for 2024.

  12. g

    Georgia Cities by Population

    • georgia-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Georgia Cities by Population [Dataset]. https://www.georgia-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions

    Area covered
    Georgia
    Description

    A dataset listing Georgia cities by population for 2024.

  13. Cheapest and most expensive countries to live in Latin America 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cheapest and most expensive countries to live in Latin America 2023 [Dataset]. https://www.statista.com/statistics/1375636/cheapest-most-expensive-countries-latin-america/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2023
    Area covered
    Americas, Latin America, LAC
    Description

    According to a recent study, Colombia had the lowest monthly cost of living in Latin America with 546 U.S. dollars needed for basic living. In contrast, four countries had a cost of living above one thousand dollars, Costa Rica, Chile, Panama and Uruguay. In 2022, the highest minimum wage in the region was recorded by Ecuador with 425 dollars per month.

    Can Latin Americans survive on a minimum wage? Even if most countries in Latin America have instated laws to guarantee citizens a basic income, these minimum standards are often not enough to meet household needs. For instance, it was estimated that almost 22 million people in Mexico lacked basic housing services. Salary levels also vary greatly among Latin American economies. In 2022, the average net monthly salary in Brazil was lower than Ecuador's minimum wage.

    What can a minimum wage afford in Latin America? Latin American real wages have generally risen in the past decade. However, consumers in this region still struggle to afford non-basic goods, such as tech products. Recent estimates reveal that, in order to buy an iPhone, Brazilian residents would have to work more than two months to be able to pay for it. A gaming console, on the other hand, could easily cost a Latin American worker several minimum wages.

  14. CPI 1.1 Texas Child Population (ages 0-17) by County 2015-2024

    • data.texas.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TX DFPS Data & Decision Support (2025). CPI 1.1 Texas Child Population (ages 0-17) by County 2015-2024 [Dataset]. https://data.texas.gov/dataset/CPI-1-1-Texas-Child-Population-ages-0-17-by-County/x5xb-idr6
    Explore at:
    tsv, xml, application/rdfxml, csv, json, application/rssxmlAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    Texas Department of Family and Protective Serviceshttps://www.dfps.texas.gov/
    Authors
    TX DFPS Data & Decision Support
    Area covered
    Texas
    Description

    As recommended by the Health and Human Services Commission (HHSC) to ensure consistency across all HHSC agencies, in 2012 DFPS adopted the HHSC methodology on how to categorize race and ethnicity. As a result, data broken down by race and ethnicity in 2012 and after is not directly comparable to race and ethnicity data in 2011 and before.

    The population totals may not match previously printed DFPS Data Books. Past population estimates are adjusted based on the U.S. Census data as it becomes available. This is important to keep the data in line with current best practices, but may cause some past counts, such as Abuse/Neglect Victims per 1,000 Texas Children, to be recalculated.

    Population Data Source - Population Estimates and Projections Program, Texas State Data Center, Office of the State Demographer and the Institute for Demographic and Socioeconomic Research, The University of Texas at San Antonio.

    Current population estimates and projections data as of December 2020.

    Visit dfps.texas.gov for information on all DFPS programs.

  15. a

    Population Density in the US 2020 Census

    • hub.arcgis.com
    • data-bgky.hub.arcgis.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2024). Population Density in the US 2020 Census [Dataset]. https://hub.arcgis.com/maps/58e4ee07a0e24e28949903511506a8e4
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Description

    This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  16. i

    Iowa Cities by Population

    • iowa-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Iowa Cities by Population [Dataset]. https://www.iowa-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.iowa-demographics.com/terms_and_conditionshttps://www.iowa-demographics.com/terms_and_conditions

    Description

    A dataset listing Iowa cities by population for 2024.

  17. o

    Oregon Cities by Population

    • oregon-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Oregon Cities by Population [Dataset]. https://www.oregon-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.oregon-demographics.com/terms_and_conditionshttps://www.oregon-demographics.com/terms_and_conditions

    Area covered
    Oregon
    Description

    A dataset listing Oregon cities by population for 2024.

  18. m

    Maine Cities by Population

    • maine-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Maine Cities by Population [Dataset]. https://www.maine-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions

    Area covered
    Maine, Portland
    Description

    A dataset listing Maine cities by population for 2024.

  19. APS 1.1 Texas Adult Populations at Risk by County/Region FY2015-FY2024

    • data.texas.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DFPS Data and Decision Support (2025). APS 1.1 Texas Adult Populations at Risk by County/Region FY2015-FY2024 [Dataset]. https://data.texas.gov/dataset/APS-1-1-Texas-Adult-Populations-at-Risk-by-County-/qjby-4sji
    Explore at:
    csv, json, application/rssxml, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    May 1, 2025
    Dataset provided by
    Texas Department of Family and Protective Serviceshttps://www.dfps.texas.gov/
    Authors
    DFPS Data and Decision Support
    Area covered
    Texas
    Description

    APS investigates allegations of abuse, neglect, and financial exploitation and provides protective services, regardless of race, creed, color, or national origin to people who are: • age 65 or older; • age 18-64 with a mental, physical, or developmental disability that substantially impairs the ability to live independently or provide for their own self-care or protection; or • emancipated minors with a mental, physical, or developmental disability that substantially impairs the ability to live independently or provide for their own self-care or protection. APS clients do not have to meet financial eligibility requirements.

    The population totals will not match previously printed DFPS Data Books. Past population estimates are adjusted based on the U.S. Census data as it becomes available. This is important to keep the data in line with current best practices, but may cause some past counts, such as Abuse/Neglect Victims per 1,000 Texas Population, to be recalculated.

    Population Data Source - Population Estimates and Projections Program, Texas State Data Center, Office of the State Demographer and the Institute for Demographic and Socioeconomic Research, The University of Texas at San Antonio.

    Current population estimates and projections for all years from 2010 to 2019 as of December 2019.

  20. c

    Colorado Cities by Population

    • colorado-demographics.com
    • myaistarter.com.tubetargeterapp.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Colorado Cities by Population [Dataset]. https://www.colorado-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions

    Area covered
    Colorado
    Description

    A dataset listing Colorado cities by population for 2024.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Christopher J. L Murray; Sandeep C Kulkarni; Catherine Michaud; Niels Tomijima; Maria T Bulzacchelli; Terrell J Iandiorio; Majid Ezzati (2023). Eight Americas: Investigating Mortality Disparities across Races, Counties, and Race-Counties in the United States [Dataset]. http://doi.org/10.1371/journal.pmed.0030260

Eight Americas: Investigating Mortality Disparities across Races, Counties, and Race-Counties in the United States

Explore at:
255 scholarly articles cite this dataset (View in Google Scholar)
application/cdfv2Available download formats
Dataset updated
Jun 1, 2023
Dataset provided by
PLOS Medicine
Authors
Christopher J. L Murray; Sandeep C Kulkarni; Catherine Michaud; Niels Tomijima; Maria T Bulzacchelli; Terrell J Iandiorio; Majid Ezzati
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Americas, United States
Description

BackgroundThe gap between the highest and lowest life expectancies for race-county combinations in the United States is over 35 y. We divided the race-county combinations of the US population into eight distinct groups, referred to as the “eight Americas,” to explore the causes of the disparities that can inform specific public health intervention policies and programs. Methods and FindingsThe eight Americas were defined based on race, location of the county of residence, population density, race-specific county-level per capita income, and cumulative homicide rate. Data sources for population and mortality figures were the Bureau of the Census and the National Center for Health Statistics. We estimated life expectancy, the risk of mortality from specific diseases, health insurance, and health-care utilization for the eight Americas. The life expectancy gap between the 3.4 million high-risk urban black males and the 5.6 million Asian females was 20.7 y in 2001. Within the sexes, the life expectancy gap between the best-off and the worst-off groups was 15.4 y for males (Asians versus high-risk urban blacks) and 12.8 y for females (Asians versus low-income southern rural blacks). Mortality disparities among the eight Americas were largest for young (15–44 y) and middle-aged (45–59 y) adults, especially for men. The disparities were caused primarily by a number of chronic diseases and injuries with well-established risk factors. Between 1982 and 2001, the ordering of life expectancy among the eight Americas and the absolute difference between the advantaged and disadvantaged groups remained largely unchanged. Self-reported health plan coverage was lowest for western Native Americans and low-income southern rural blacks. Crude self-reported health-care utilization, however, was slightly higher for the more disadvantaged populations. ConclusionsDisparities in mortality across the eight Americas, each consisting of millions or tens of millions of Americans, are enormous by all international standards. The observed disparities in life expectancy cannot be explained by race, income, or basic health-care access and utilization alone. Because policies aimed at reducing fundamental socioeconomic inequalities are currently practically absent in the US, health disparities will have to be at least partly addressed through public health strategies that reduce risk factors for chronic diseases and injuries.

Search
Clear search
Close search
Google apps
Main menu