This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated: Radar Image Radar Image with Color as Height Radar Image with Color Wrapped Fringes -Shaded Relief Perspective View with B/W Radar Image Overlaid Perspective View with Radar Image Overlaid, Color as Height Perspective View of Shaded Relief Perspective View with Landsat or other Image Overlaid Contour Map - B/W with Contour Lines Stereo Pair Anaglypgh The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
This is a 1 arc-second (approximately 30 m) resolution tiled collection of the 3D Elevation Program (3DEP) seamless data products . 3DEP data serve as the elevation layer of The National Map, and provide basic elevation information for Earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. 3DEP data compose an elevation dataset that consists of seamless layers and a high resolution layer. Each of these layers consists of the best available raster elevation data of the conterminous United States, Alaska, Hawaii, territorial islands, Mexico and Canada. 3DEP data are updated continually as new data become available. Seamless 3DEP data are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are referenced to the North American Vertical Datum of 1988 (NAVD 88). The vertical reference will vary in other areas. The elevations in these DEMs represent the topographic bare-earth surface. All 3DEP products are public domain.
This dataset includes data over Canada and Mexico as part of an international, interagency collaboration with the Mexico's National Institute of Statistics and Geography (INEGI) and the Natural Resources Canada (NRCAN) Centre for Topographic Information-Sherbrook, Ottawa. For more details on the data provenance of this dataset, visit here and here.
Click here for a broad overview of this dataset
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1 arc-second (approximately 30 m) resolution. The elevations in this Digital Elevation Model (DEM) represent the topographic bare-earth surface. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The seamless 1 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 ( ...
In this joint demonstration project for the Tampa Bay region, NOAA's National Ocean Service (NOS) and the U.S. Geological Survey (USGS) have merged NOAA bathymetric and USGS topographic data sets into a hybrid digital elevation model (DEM) with all data initially referenced to the ellipsoid, but transformable to any of 28 orthometric, 3-D, or tidal datums.A seamless bathymetric/topographic digital elevation model (DEM) was developed by merging the "best available" bathymetric data from NOAA and topographic data for USGS. Each of the datasets was initially processed independently to apply the "best available" criteria to select the data to be merged. Prior to merging, the selected data were transformed to a common reference coordinate system, both horizontally and vertically.The selected topography points within the shoreline buffer zone and the bathymetry points were gridded to produce a raster surface model with a 1-arc-second (30-meter) grid spacing to match the resolution of NED. The points were input to an implementation of the ANUDEM thin plate spline interpolation algorithm, which is optimized for generation of topographic surfaces. The bathymetry points could have been gridded independently of the topographic data, but the shoreline zone land elevations were included in the interpolation to ensure a better match of the bathymetric and topographic surfaces for the subsequent mosaicing step. To avoid introduction of any interpolation edge effects into the merged elevation model, the output grid from the interpolation was clipped to include only land elevations within 300 meters of the shoreline.The final processing step involved the mosaicing of the bathymetry grid and the NED elevation grid. The values in the 300-meter overlap area were blended by weighted averaging, where the weights for each grid are determined on a cell-by-cell basis according to the cell's proximity to the edges of the overlap area. The resulting final merged product is a seamless bathymetric/topographic model covering the Tampa Bay region at a grid spacing of 1-arc-second (30-meter). The vertical coordinates represent elevation in decimal meters relative to the GRS80 ellipsoid, and the horizontal coordinates are decimal degrees of latitude and longitude referenced to the NAD83 datum.This dataset is intended for geospatial applications that require seamless land elevation and water depth information in coastal environments.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The joint Natural Resources Canada/Department of Fisheries and Oceans Marine Spatial Planning Program requires the highest resolution marine based bathymetric elevation data and adjacent land based topographic elevation data that are available. This digital elevation model of Canada's west coast compiles the best data available from multiple government agencies to create a regional model gridded at 10 meter spacing. The transitions between the marine and terrestrial areas are seamless creating a continuous surface of elevations for scientific research and mapping.
7.5 Minute Digital Elevation Model for the state of Arizona. Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a regular array of elevations cast on a designated coordinate projection system. The DEM data are stored as a series of profiles in which the spacing of the elevations along and between each profile is in regular whole number intervals. The normal orientation of data is by columns and rows. Each column contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A-record), followed by a series of profile records (B-records) each of which include a short B-record header followed by a series of ASCII integer elevations per each profile. The last physical record of the DEM is an accuracy record (C-record). The DEM for 7.5-minute units correspond to the USGS 1:24000 scale topographic quadrangle map series for all of the United States and its territories. Each 7.5 minute DEM is based on 30- by 30-meter data spacing with Universal Transverse Mercator(UTM) projection. Each 7.5- by 7.5-minute block provides the same coverage as the standard USGS 7.5-minute map series.
Smoothed contours were produced at 2 foot intervals from topographic vector data (breaklines) collected by photogrammetrists. Breaklines denote the major terrain shifts as percieved by viewing the aerial photography stereoscopically. Major breaks, such as the top and bottom of hills were marked with the breaklines. Point data (DTM) was used to supplant the breakline data to provide enough information to model the terrain of the area. The data was collected at scale of 1"= 40'.
Survey field crews surveyed 14 photo identifiable points used for photo control. All the ground control points were used in the final analytical triangulation solution. The horizontal positions were reported in feet; NAD1983 (2011) Massachusetts State Plane Coordinate System, Mainland Zone, Epoch 2010.00. Elevations were based on the NorthAmerican Vertical Datum, 1988.
The aerial photographic mission was carried out on April 12, 2017. 459 exposures were taken in 16 flight lines at 3300' AMT resulting in a pixel resolution of 0.22' . The photography was collected with 60% overlap to ensure proper stereo viewing.
The digital photographs were triangulated using KLT software. The interior orientations of each photo were measured, the photos were tied togther within flight lines and lastly each flight line was tied, creating one single unified block. This block was then projected into Massachusetts State Plane NAD 83 coordinates using the14 aerial photo ground control points that were collected by traditional survey. RMS formulas were used to compute error propagation and reduce error.
The breakline and dtm data collected through the stereocompilation process was edited in KLT Atlas software to check for continuity. A TIN was generated from the edited topographic data which was then used to produce smoothed contours at 2' intervals. The contour information was then checked for errors and converted into AutoCAD .dxf format for GIS import.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) covering Alaska only, and is 5-meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard 5-meter DEMs are produced exclusively from interferometric synthetic aperture radar (Ifsar) source data of 5-meter or higher resolution. Five-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. This DEM is delivered in the original resolution, with the original spatial reference. All elevation units have been converted to meters. These data may be used as the source of updates to the seamless 1/3 ...
December 1995, June 2001
description: The USGS Imagery Topo Large service from The National Map (TNM) is a dynamic topographic base map service that combines the best available data (Boundaries, Elevation, Geographic Names, Hydrography, Land Cover, Structures, and Transportation with Orthoimagery) that make up The National Map. Contours generated for the US Topo product are visible along with other data at scales of 1:13,500 and larger. This product is designed to provide a seamless view of the data in a geographic information system (GIS) accessible format, closely resembling The National Map US Topo GeoPDF product at large scales.; abstract: The USGS Imagery Topo Large service from The National Map (TNM) is a dynamic topographic base map service that combines the best available data (Boundaries, Elevation, Geographic Names, Hydrography, Land Cover, Structures, and Transportation with Orthoimagery) that make up The National Map. Contours generated for the US Topo product are visible along with other data at scales of 1:13,500 and larger. This product is designed to provide a seamless view of the data in a geographic information system (GIS) accessible format, closely resembling The National Map US Topo GeoPDF product at large scales.
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
Digital elevation model used for the conservation assessment of Greater Sage-grouse and sagebrush habitat conducted by the Western Association of Fish and Wildlife Agencies. Digital elevation models were downloaded from the USGS National Elevation Dataset (NED) which was developed by merging the highest-resolution, best quality elevation data available across the United States into a seamless raster format to provide 1:24,000-scale Digital Elevation Model (DEM) data for the conterminous US.
This elevation map represents the modeled elevation (mTAW) of the top of the Tienen Formation. 'Elevation map Top Formatie van Tienen' is a map layer that is part of the 'H3O-De Kempen - Geology' dataset.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/World_Topo_Map
This is a dataset download, not a document. The Open button will start the download.Digital Elevation Model. 10m pixels. Elevation values in feet. Elevation data assembled from merged 7.5-minute DEM blocks (10- by 10-m data spacing).
The topographic maps (TK) are generated from digital landscape and terrain models as well as the official property cadastre information system ALKIS and visualised according to the nationwide signature catalogue of the presentation editions ‘basemap.de P10’ grid. The TKs are available nationwide and in the uniform geodetic reference system and map projection for the state of Brandenburg. They are available as analogue map prints (plots), as raster data and as web services. When using the data, the license conditions must be observed.
The Digital SAR Mosaic and Elevation Map of the Greenland Ice Sheet combines the most detailed synthetic aperture radar (SAR) image mosaic available with the best current digital elevation model. The mosaic image shows both the _location of the ice edge and the distribution of melt-related 'scatterers' on the surface. These scatterers include ice lenses and complex layered structure in the percolation zone and bare ice of the ablation zone. Other melt-related features that can be seen include lake and surface meltwater stream channels at lower elevations, as well as ice-marginal lakes.This characterization of the ice sheet provides a reference against which future change can be measured. Changing conditions resulting from climatic variation should show up as changes in the ice margin and shifts in the hydrologic zones. It is hoped that the standard reference provided by this data set can facilitate activities aimed at change detection and promote other work aimed at understanding the processes operating on the ice sheet.The image data are derived from SAR image swaths acquired by the ERS-1 satellite during August of 1992. The mosaic was assembled at the Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC). Its component images are a copyrighted product of the European Space Agency. The mosaic, a value-added derived product, is available to individuals and non-profit organizations for research oriented purposes only. The Danish geodetic and cadastral agency Kort-og Matrikelstyrelsen (KMS) compiled the elevation data provided with the product from a number of sources, including field surveys, aerial photographs, and the ERS-1 radar altimeter.
This topographic map is designed to be used as a basemap and a reference map. The map has been compiled by Esri and the ArcGIS user community from a variety of best available sources. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Hillshade and World Topographic Map.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.