13 datasets found
  1. d

    Historical ROW Maps

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). Historical ROW Maps [Dataset]. https://catalog.data.gov/dataset/historical-row-maps
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    City of Washington, DC
    Description

    Right of Way Scan. Right of Way Distribution Maps, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Scans provided by DDOT identified rights of way locations which were best fit to road planimetrics.

  2. u

    Utah Address Points

    • opendata.gis.utah.gov
    • opendata.utah.gov
    • +3more
    Updated Jul 13, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Utah Automated Geographic Reference Center (AGRC) (2016). Utah Address Points [Dataset]. https://opendata.gis.utah.gov/datasets/utah-address-points
    Explore at:
    Dataset updated
    Jul 13, 2016
    Dataset authored and provided by
    Utah Automated Geographic Reference Center (AGRC)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The Address Points dataset shows Utah address points for all twenty-nine Utah counties. An address point represents a geographic location that has been assigned a US Postal Service (USPS) address by the local address authority (i.e., county or municipality) but does not necessarily receive mail. Address points may include several pieces of information about the structure or location that’s being mapped, such as:the full address (i.e., the USPS mailing address, if the address is for a physical location [rather than a PO box]);the landmark name; whether the location is a building;the type of unit;the city and ZIP code; unique code identifiers of the specific geographic location, including the Federal Information Processing Standard Publication (FIPS) county code and the US National Grid (USNG) spatial address;the address source; andthe date that the address point was loaded into the map layer.This dataset is mapping grade; it is a framework layer that receives regular updates. As with all our datasets, the Utah Geospatial Resource Center (UGRC) works to ensure the quality and accuracy of our data to the best of our abilities. Maintaining the dataset is now an ongoing effort between UGRC, counties, and municipalities. Specifically, UGRC works with each county or municipality’s Master Address List (MAL) authority to continually improve the address point data. Counties have been placed on an update schedule depending on the rate of new development and change within them. Populous counties, such as Weber, Davis, Salt Lake, Utah, and Washington, are more complete and are updated monthly, while rural or less populous counties may be updated quarterly or every six months.The information in the Address Points dataset was originally compiled by Utah counties and municipalities and was aggregated by UGRC for the MAL grant initiative in 2012. The purpose of this initiative was to make sure that all state entities were using the same verified, accurate county and municipal address information. Since 2012, more data has been added to the Address Points GIS data and is used for geocoding, 911 response, and analysis and planning purposes. The Address Point data is also used as reference data for the api.mapserv.utah.gov geocoding endpoint, and you can find the address points in many web mapping applications. This dataset is updated monthly and can also be found at: https://gis.utah.gov/data/location/address-data/.

  3. o

    10m Annual Land Use Land Cover (9-class)

    • registry.opendata.aws
    • collections.sentinel-hub.com
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Impact Observatory (2023). 10m Annual Land Use Land Cover (9-class) [Dataset]. https://registry.opendata.aws/io-lulc/
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    <a href="https://www.impactobservatory.com/">Impact Observatory</a>
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).

  4. b

    Building Permit Data System (BPDS) Web Service

    • gisdata.baltometro.org
    Updated Aug 8, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Metropolitan Council (2014). Building Permit Data System (BPDS) Web Service [Dataset]. https://gisdata.baltometro.org/maps/b9dae076e7ba4b8bb582d75d2558579a
    Explore at:
    Dataset updated
    Aug 8, 2014
    Dataset authored and provided by
    Baltimore Metropolitan Council
    Area covered
    Description

    SummaryThis data set shows building permits for the Baltimore metropolitan region. The data goes back to 2000 and is updated approximately once every two months. Expanded building permit data can be found at https://www.baltometro.org/community/data-maps/building-permit-data.DescriptionThe permits include any permit that is use code 40-48 (most new residential), 60-65 (mixed use), or is greater than or equal to $50,000. Historically, BMC receives the permits from participating jurisdictions and geocodes them. In recent years, some jurisdictions have started geocoding their own permits. When this is the case, BMC incorporates the geocoded points as given, and does not include them in its own geocoding process.Expanded building permit data can be found at https://www.baltometro.org/community/data-maps/building-permit-data.Layers:BPDS_Residential_New_ConstructionBPDS_Residential_AlterationsBPDS_Non_Residential_New_ConstructionBPDS_ Non_Residential _AlterationsBPDS_Mixed_Use_New_ConstructionThere is no layer for Mixed Use alterations; alterations to Mixed Use always get classified as Residential or Non-Residential.Field NamesField Name (alias)Descriptionpermit_no (County Permit ID)Original permit ID provided by the jurisdictionissue_dt (Date Permit Was Issued)Date the permit was issuedxcoord (X Coordinate)Longitude, in NAD 1983 decimal degreesycoord (Y Coordinate)Latitude, in NAD 1983 decimal degreessite_addr (Site Address)Address of the constructionzipcode (Site Zipcode)Zipcode of the constructionoffice (Office Number)This number corresponds to a jurisdiction and is used for BMC administrative recordspmt_use (Permit Use)Permit use code. A list of the values can be found at https://gis.baltometro.org/Application/BPDS/docs/BPDS_Permit_Use_Codes.pdfpmt_type (Permit Type)Permit type code. A list of the values can be found at https://gis.baltometro.org/Application/BPDS/docs/BPDS_Permit_Use_Codes.pdfdevelopment_name (Development Name / Subdivision)Subdivision name, if providedunit_count (Number of Units)Number of units, if provided. Only found in residential recordstenure (Tenure)If provided, indicates whether building is expected to be for rent or for sale after construction is complete. 1=For Rent, 2=For Saleamount (Amount)Estimated cost of constructionpmt_cat (Permit Category)Simplified classification of the pmt_use and pmt_type fieldsdescrip (Description)Description of construction, if providedJurisdiction (Jurisdiction)Jurisdiction (a county or city)Update CycleThe data is updated approximately once every three months.User NoteOver the years, building permit points were geocoded using a variety of software and reference data. The Baltimore Metropolitan Council made every effort to ensure accurate geocoding however there may be inaccuracies or inconsistencies in how the points were placed. For best results, the Baltimore Metropolitan Council recommends aggregating the building permit points to a larger geography (ex. Census tract, zip code) when analyzing the data.Data Access InstructionsTo download the data or access it via API, visit https://gisdata.baltometro.org/.Technical ContactFor questions or comments, contact Erin Bolton, GIS Coordinator, at ebolton@baltometro.org or 410-732-0500.

  5. u

    Treeline Maps - ALFRESCO Model Outputs - Linear Coupled

    • catalog.snap.uaf.edu
    Updated May 29, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scenarios Network for Alaska and Arctic Planning (2015). Treeline Maps - ALFRESCO Model Outputs - Linear Coupled [Dataset]. https://catalog.snap.uaf.edu/geonetwork/srv/api/records/e93f0c0f-4946-4922-9683-cf7d734058c6
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    May 29, 2015
    Dataset authored and provided by
    Scenarios Network for Alaska and Arctic Planning
    Area covered
    Description

    These are map products depicting modeled treeline dynamics. The left panel indicates modeled treeline dynamics from a single 2014 baseline year to the year 2100. The right panel indicates basal area accumulation on a 1km x 1km pixel basis during the year 2100, which gives an indication where possible further treeline advance may occur beyond 2100.

    The source datasets used to create these maps can be found here: https://catalog.snap.uaf.edu/geonetwork/srv/eng/catalog.search#/metadata/53b35453-7b88-4ea7-8321-5447f8926c48

    ALFRESCO is a landscape scale fire and vegetation dynamics model. These specific outputs are from the Integrated Ecosystem Model (IEM) project, and are from the linear coupled version using AR4/CMIP3 and AR5/CMIP5 climate inputs (IEM Generation 1a).

    These outputs include data from model rep 171(AR4/CMIP3) and rep 26(AR5/CMIP5), referred to as the “best rep” out of 200 replicates. The best rep was chosen through comparing ALFRESCO’s historical fire outputs to observed historical fire patterns. Single rep analysis is not recommended as a best practice, but can be used to visualize possible changes.

    The IEM Generation 1 is driven by outputs from 4 climate models, and two emission scenarios: AR4/CMIP3 SRES A1B CCCMA-CGCMS-3.1 MPI-ECHAM5

    AR5/CMIP5 RCP 8.5 MRI-CGCM3 NCAR-CCSM4

  6. Z

    Geoparsing with Large Language Models: Leveraging the linguistic...

    • data.niaid.nih.gov
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous, Anonymous (2024). Geoparsing with Large Language Models: Leveraging the linguistic capabilities of generative AI to improve geographic information extraction [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_13862654
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset authored and provided by
    Anonymous, Anonymous
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Geoparsing with Large Language Models

    The .zip file included in this repository contains all the code and data required to reproduce the results from our paper. Note, however, that in order to run the OpenAI models, users will required an OpenAI API key and sufficient API credits.

    Data

    The data used for the paper are in the datasetst and results folders.

    **Datasets: **This contains the XML files (LGL and Geovirus) and Json files (News2024) used to benchmark the models. It also contains all the data used to fine-tune the gpt-3.5 model, the prompt templates sent to the LLMs, and other data used for mapping and data creation.

    **Results: **This contains the results for the models on the three datastes. The folder is separated by dataset, with a single .csv file giving the results for each model on each dataset separately. The .csv file is structured so that each row contains either a predicted toponym and an associated true toponym (along with assigned spatial coordinates), if the model correctly identified a toponym; otherwise the true toponym columns are empty for false positives and the predicted columns are empty for false negatives.

    Code

    The code is split into two seperate folders gpt_geoparser and notebooks.

    **GPT_Geoparser: **this contains the classes and methods used process the XML and JSON articles (data.py), interact with the Nominatim API for geocoding (gazetteer.py), interact with the OpenAI API (gpt_handler.py), process the outputs from the GPT models (geoparser.py) and analyse the results (analysis.py).

    Notebooks: This series of notebooks can be used to reproduce the results given in the paper. The file names a reasonably descriptive of what they do within the context of the paper.

    Code/software

    Requirements

    Numpy

    Pandas

    Geopy

    Scitkit-learn

    lxml

    openai

    matplotlib

    Contextily

    Shapely

    Geopandas

    tqdm

    huggingface_hub

    Gnews

    Access information

    Other publicly accessible locations of the data:

    The LGL and GeoVirus datasets can also be obtained here (opens in new window).

    Abstract

    Geoparsing- the process of associating textual data with geographic locations - is a key challenge in natural language processing. The often ambiguous and complex nature of geospatial language make geoparsing a difficult task, requiring sophisticated language modelling techniques. Recent developments in Large Language Models (LLMs) have demonstrated their impressive capability in natural language modelling, suggesting suitability to a wide range of complex linguistic tasks. In this paper, we evaluate the performance of four LLMs - GPT-3.5, GPT-4o, Llama-3.1-8b and Gemma-2-9b - in geographic information extraction by testing them on three geoparsing benchmark datasets: GeoVirus, LGL, and a novel dataset, News2024, composed of geotagged news articles published outside the models' training window. We demonstrate that, through techniques such as fine-tuning and retrieval-augmented generation, LLMs significantly outperform existing geoparsing models. The best performing models achieve a toponym extraction F1 score of 0.985 and toponym resolution accuracy within 161 km of 0.921. Additionally, we show that the spatial information encoded within the embedding space of these models may explain their strong performance in geographic information extraction. Finally, we discuss the spatial biases inherent in the models' predictions and emphasize the need for caution when applying these techniques in certain contexts.

    Methods

    This contains the data and codes required to reproduce the results from our paper. The LGL and GeoVirus datasets are pre-existing datasets, with references given in the manuscript. The News2024 dataset was constructed specifically for the paper.

    To construct the News2024 dataset, we first created a list of 50 cities from around the world which have population greater than 1000000. We then used the GNews python package https://pypi.org/project/gnews/ (opens in new window) to find a news article for each location, published between 2024-05-01 and 2024-06-30 (inclusive). Of these articles, 47 were found to contain toponyms, with the three rejected articles referring to businesses which share a name with a city, and which did not otherwise mention any place names.

    We used a semi autonmous approach to geotagging the articles. The articles were first processed using a Distil-BERT model, fine tuned for named entity recognicion. This provided a first estimate of the toponyms within the text. A human reviewer then read the articles, and accepted or rejected the machine tags, and added any tags missing from the machine tagging process. We then used OpenStreetMap to obtain geographic coordinates for the location, and to identify the toponym type (e.g. city, town, village, river etc). We also flagged if the toponym was acting as a geo-political entity, as these were reomved from the analysis process. In total, 534 toponyms were identified in the 47 news articles.

  7. g

    Ontario Imagery Web Map Service (OIWMS)

    • geohub.lio.gov.on.ca
    • hub.arcgis.com
    Updated Mar 31, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information Ontario (2014). Ontario Imagery Web Map Service (OIWMS) [Dataset]. https://geohub.lio.gov.on.ca/maps/101295c5d3424045917bdd476f322c02
    Explore at:
    Dataset updated
    Mar 31, 2014
    Dataset authored and provided by
    Land Information Ontario
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Area covered
    Description

    The Ontario Imagery Web Map Service (OIWMS) is an open data service available to everyone free of charge. It provides instant online access to the most recent, highest quality, province wide imagery. GEOspatial Ontario (GEO) makes this data available as an Open Geospatial Consortium (OGC) compliant web map service or as an ArcGIS map service. Imagery was compiled from many different acquisitions which are detailed in the Ontario Imagery Web Map Service Metadata Guide linked below. Instructions on how to use the service can also be found in the Imagery User Guide linked below.Note: This map displays the Ontario Imagery Web Map Service Source, a companion ArcGIS web map service to the Ontario Imagery Web Map Service. It provides an overlay that can be used to identify acquisition relevant information such as sensor source and acquisition date. OIWMS contains several hierarchical layers of imagery, with coarser less detailed imagery that draws at broad scales, such as a province wide zooms, and finer more detailed imagery that draws when zoomed in, such as city-wide zooms. The attributes associated with this data describes at what scales (based on a computer screen) the specific imagery datasets are visible.Available ProductsOntario Imagery OCG Web Map Service – public linkOntario Imagery ArcGIS Map Service – public linkOntario Imagery Web Map Service Source – public linkOntario Imagery ArcGIS Map Service – OPS internal linkOntario Imagery Web Map Service Source – OPS internal linkAdditional DocumentationOntario Imagery Web Map Service Metadata Guide (PDF)Imagery User Guide (Word)StatusCompleted: Production of the data has been completedMaintenance and Update FrequencyAnnually: Data is updated every yearContactOntario Ministry of Natural Resources, Geospatial Ontario, imagery@ontario.ca

  8. W

    Historic Maps Collection

    • cloud.csiss.gmu.edu
    • metadata.bgs.ac.uk
    Updated Dec 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Kingdom (2019). Historic Maps Collection [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/historic-maps-collection
    Explore at:
    Dataset updated
    Dec 18, 2019
    Dataset provided by
    United Kingdom
    Description

    This dataset comprises 2 collections of maps. The facsmile collection contains all the marginalia information from the original map as well as the map itself, while the georectified collection contains just the map with an associated index for locating them. Each collection comprises approximately 101 000 monochrome images at 6-inch (1:10560) scale. Each image is supplied in .tiff format with appropriate ArcView and MapInfo world files, and shows the topography for all areas of England, Wales and Scotland as either quarter or, in some cases, full sheets. The images will cover the approximate epochs 1880's, 1900's, 1910's, 1920's and 1930's, but note that coverage is not countrywide for each epoch. The data was purchased by BGS from Sitescope, who obtained it from three sources - Royal Geographical Society, Trinity College Dublin and the Ordnance Survey. The data is for internal use by BGS staff on projects, and is available via a customised application created for the network GDI enabling users to search for and load the maps of their choice. The dataset will have many uses across all the geoscientific disciplines across which BGS operates, and should be viewed as a valuable addition to the BGS archive. There has been a considerable amount of work done during 2005, 2006 and 2007 to improve the accuracy of the OS Historic Map Collection. All maps should now be located to +- 50m or better. This is the best that can be achieved cost effectively. There are a number of reasons why the maps are inaccurate. Firstly, the original maps are paper and many are over 100 years old. They have not been stored in perfect condition. The paper has become distorted to varying degrees over time. The maps were therefore not accurate before scanning. Secondly, different generations of maps will have used different surveying methods and different spatial referencing systems. The same geographical object will not necessarily be in the same spatial location on subsequent editions. Thirdly, we are discussing maps, not plans. There will be cartographic generalisations which will affect the spatial representation and location of geographic objects. Finally, the georectification was not done in BGS but by the company from whom we purchased the maps. The company no longer exists. We do not know the methodology used for georectification.

  9. w

    streets ln

    • yourdata.wycokck.org
    • hub.arcgis.com
    • +1more
    Updated Sep 2, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unified Government of Wyandotte County Kansas City, Ks (2016). streets ln [Dataset]. https://yourdata.wycokck.org/datasets/streets-ln/api
    Explore at:
    Dataset updated
    Sep 2, 2016
    Dataset authored and provided by
    Unified Government of Wyandotte County Kansas City, Ks
    Area covered
    Description

    Summary: This dataset serves as a core reference layer in support of the Unified Government's Enterprise GIS (E-GIS). It is used for visualization, query, analysis, and address matching/geocoding of road network. It is also used by the Unified Government's CAD (Computer Aided Dispatch) 9-1-1 system as geographic location aid, and is also shared with Kansas City area's Mid America Regional Council regional E9-1-1 emergency response system.Description: Best cartographic rendering at map scale 1:6000 or smaller. Contains federal, state, county, and city roads, park drives, cemetery drives, plus private roads, ramps, service roads, alleys, and some private drives. Includes street name directional prefix, street name proper, and street type attribution, along with theoretical block address range information. Roads are depicted as a single line in center of pavement (not double-line, edge of pavement).By using this dataset you acknowledge the following:Kansas Open Records Act StatementThe Kansas Open Records Act provides in K.S.A. 45-230 that "no person shall knowingly sell, give or receive, for the purpose of selling or offering for sale, any property or service to persons listed therein, any list of names and addresses contained in, or derived from public records..." Violation of this law may subject the violator to a civil penalty of $500.00 for each violation. Violators will be reported for prosecution.By accessing this site, the user makes the following certification pursuant to K.S.A. 45-220(c)(2): "The requester does not intend to, and will not: (A) Use any list of names or addresses contained in or derived from the records or information for the purpose of selling or offering for sale any property or service to any person listed or to any person who resides at any address listed; or (B) sell, give or otherwise make available to any person any list of names or addresses contained in or derived from the records or information for the purpose of allowing that person to sell or offer for sale any property or service to any person listed or to any person who resides at any address listed."

  10. ACS Poverty Status Variables - Boundaries

    • heat.gov
    • coronavirus-resources.esri.com
    • +11more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Boundaries [Dataset]. https://www.heat.gov/maps/0e468b75bca545ee8dc4b039cbb5aff6
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  11. ACS Context for Senior Well-Being - Boundaries

    • coronavirus-resources.esri.com
    • anrgeodata.vermont.gov
    • +5more
    Updated Mar 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Context for Senior Well-Being - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/e4b16658bc4749c58cb55ced3298d7d2
    Explore at:
    Dataset updated
    Mar 12, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows demographic context for senior well-being work. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. The layer is symbolized to show the percentage of population aged 65 and up (senior population). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001, B09021, B17020, B18101, B23027, B25072, B25093, B27010, B28005, C27001B-IData downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  12. a

    NLS Historic Maps API: Historical Maps of Great Britain

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Sep 19, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    klokantech (2017). NLS Historic Maps API: Historical Maps of Great Britain [Dataset]. https://hub.arcgis.com/maps/131be1ff1498429eacf806f939807f20
    Explore at:
    Dataset updated
    Sep 19, 2017
    Dataset authored and provided by
    klokantech
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    National Library of Scotland Historic Maps APIHistorical Maps of Great Britain for use in mashups and ArcGIS Onlinehttps://nls.tileserver.com/https://maps.nls.uk/projects/api/index.htmlThis seamless historic map can be:embedded in your own websiteused for research purposesused as a backdrop for your own markers or geographic dataused to create derivative work (such as OpenStreetMap) from it.The mapping is based on out-of-copyright Ordnance Survey maps, dating from the 1920s to the 1940s.The map can be directly opened in a web browser by opening the Internet address: https://nls.tileserver.com/The map is ready for natural zooming and panning with finger pinching and dragging.How to embed the historic map in your websiteThe easiest way of embedding the historical map in your website is to copy < paste this HTML code into your website page. Simple embedding (try: hello.html):You can automatically position the historic map to open at a particular place or postal address by appending the name as a "q" parameter - for example: ?q=edinburgh Embedding with a zoom to a place (try: placename.html):You can automatically position the historic map to open at particular latitude and longitude coordinates: ?lat=51.5&lng=0&zoom=11. There are many ways of obtaining geographic coordinates. Embedding with a zoom to coordinates (try: coordinates.html):The map can also automatically detect the geographic location of the visitor to display the place where you are right now, with ?q=auto Embedding with a zoom to coordinates (try: auto.html):How to use the map in a mashupThe historic map can be used as a background map for your own data. You can place markers on top of it, or implement any functionality you want. We have prepared a simple to use JavaScript API to access to map from the popular APIs like Google Maps API, Microsoft Bing SDK or open-source OpenLayers or KHTML. To use our map in your mashups based on these tools you should include our API in your webpage: ... ...

  13. a

    Number of Lanes

    • hub.arcgis.com
    • data-ladotd.opendata.arcgis.com
    • +1more
    Updated Oct 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisiana Department of Transportation & Development (2019). Number of Lanes [Dataset]. https://hub.arcgis.com/datasets/LADOTD::number-of-lanes/api
    Explore at:
    Dataset updated
    Oct 1, 2019
    Dataset authored and provided by
    Louisiana Department of Transportation & Development
    Area covered
    Description

    This the Louisiana Department of Transportation & Development's Enterprise Linear Reference System (LRS) data with in Roads & Highways (R&H). Not all data stored within R&H are published here as the data is sensitive or it has not been populated in the database. Roads & Highways is edited daily and every attempt is made to ensure this data is accurate and up to date. There are known exceptions to this and the Department is working to replace, collect and edit these exceptions. As the Department works to improve the quality of the data, some datasets may be removed from this service or replaced with better quality data. Also, as FHWA changes reporting requirements, data is affected by these requirements and may change at anytime. There is typically a one day delay from when edits occur to this service being updated, edits are made continually as prioritized by the Department Executive Management.https://maps.dotd.la.gov/r_and_h_datadictionary/metadata.htm

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
City of Washington, DC (2025). Historical ROW Maps [Dataset]. https://catalog.data.gov/dataset/historical-row-maps

Historical ROW Maps

Explore at:
Dataset updated
Feb 5, 2025
Dataset provided by
City of Washington, DC
Description

Right of Way Scan. Right of Way Distribution Maps, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Scans provided by DDOT identified rights of way locations which were best fit to road planimetrics.

Search
Clear search
Close search
Google apps
Main menu