17 datasets found
  1. e

    Events and Probabilities

    • metadata.europe-geology.eu
    Updated Apr 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ISPRA - Italian National Institute for Environmental Protection and Research (2025). Events and Probabilities [Dataset]. https://metadata.europe-geology.eu/record/basic/e645855c332be48b6a52ed4e5e7b15f688caeb55
    Explore at:
    Dataset updated
    Apr 7, 2025
    Dataset authored and provided by
    ISPRA - Italian National Institute for Environmental Protection and Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These datasets represent a systematic collection of harmonized data concerning geological events. GIS layers display data on the Portal at a resolution of 1:100,000 and 1:250,000 scale concerning earthquakes, submarine landslides, volcanoes, tsunamis, fluid emissions and Quaternary tectonics, subdivided according to their geometry (polygons, points and lines). They provide information on the type of events which have taken place in the past and might potentially occur again. Where available, details include dimensions, state of activity, morphological type and lithology. The elaboration of guidelines to compile GIS layers was aimed at identifying parameters to be used to thoroughly characterize each event. Particular attention has been devoted to the definition of the Attribute tables in order to achieve the best degree of harmonization and standardization complying with the European INSPIRE Directive. Shapefiles can be downloaded from the Portal and used locally in order to browse through the details of the different features, consulting their Attribute tables. Information contained therein provide an inventory of available data which can be fruitfully applied in the management of coastal areas and support planning of further surveys. By combining the diverse information contained in the different layers, it might be possible to elaborate additional thematic maps which could support further research. Moreover, they potentially represent a useful tool to increase awareness of the hazards which might affect coastal areas. Data sources include detailed information held by the Project Partners plus any further publicly available third-party data (last update Sep. 2021). All products delivered by Partners have been collated, verified and validated in order to achieve the best degree of harmonization and INSPIRE compliance. Each layer is complemented by an Attribute table which provides, in addition to the location, type of geological event and its references (mandatory), further information for each occurrence (where available). Since features considered within WP6 have a scattered distribution, the additional layer “Geological events distribution” provides basic information on areas of occurrences, no occurrences and no data for the marine areas surrounding European countries.

  2. Recent Hurricanes, Cyclones and Typhoons

    • gis-usflibrary.hub.arcgis.com
    • pacificgeoportal.com
    • +17more
    Updated Jun 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Recent Hurricanes, Cyclones and Typhoons [Dataset]. https://gis-usflibrary.hub.arcgis.com/maps/adfe292a67f8471a9d8230ef93294414
    Explore at:
    Dataset updated
    Jun 11, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Earth
    Description

    This layer features tropical storm (hurricanes, typhoons, cyclones) tracks, positions, and observed wind swaths from the past hurricane season for the Atlantic, Pacific, and Indian Basins. These are products from the National Hurricane Center (NHC) and Joint Typhoon Warning Center (JTWC). They are part of an archive of tropical storm data maintained in the International Best Track Archive for Climate Stewardship (IBTrACS) database by the NOAA National Centers for Environmental Information.Data SourceNOAA National Hurricane Center tropical cyclone best track archive.Update FrequencyWe automatically check these products for updates every 15 minutes from the NHC GIS Data page.The NHC shapefiles are parsed using the Aggregated Live Feeds methodology to take the returned information and serve the data through ArcGIS Server as a map service.Area CoveredWorldWhat can you do with this layer?Customize the display of each attribute by using the ‘Change Style’ option for any layer.Run a filter to query the layer and display only specific types of storms or areas.Add to your map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools like ‘Enrich Data’ on the Observed Wind Swath layer to determine the impact of cyclone events on populations.Visualize data in ArcGIS Insights or Operations Dashboards.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to NOAA or JTWC sources for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  3. V

    Vision Zero Community Engagement Events

    • data.virginia.gov
    Updated Mar 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arlington GIS Portal (2024). Vision Zero Community Engagement Events [Dataset]. https://data.virginia.gov/dataset/vision-zero-community-engagement-events
    Explore at:
    csv, kml, geojson, zip, arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Mar 11, 2024
    Dataset provided by
    Arlington County, VA - GIS Mapping Center
    Authors
    Arlington GIS Portal
    Description

    Locations of Vision Zero community engagement events. This data includes date, location name, address, type, and description of the event.

    Contact: Department of Environmental Services

    Data Accessibility: Internal Use Only

    Update Frequency: As Needed

    Last Revision Date: 2/2/2024

    Creation Date: 2/2/2024

    Feature Dataset Name: DES_TEO

    Layer Name: VisionZero_Community_Events

  4. Top Weather Events 2019

    • geospatial-nws-noaa.opendata.arcgis.com
    Updated Dec 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2019). Top Weather Events 2019 [Dataset]. https://geospatial-nws-noaa.opendata.arcgis.com/datasets/top-weather-events-2019
    Explore at:
    Dataset updated
    Dec 8, 2019
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Description

    Web mapping application showing some of the more memorable weather events of 2019 in the WFO Dallas/Fort Worth area of responsibility. Events shown include the severe wind event in March 13th, March 24 large hail event, June 9th Dallas Wind Event, Tornado Outbreak on October 20th and several other severe weather events in 2019. The summary includes radar archive, storm reports, tornado tracks, pictures, social media reports covering the events and additional details.

  5. e

    Lurgan Schools: The Differences We Share - Esri User Conference San Diego...

    • gisinschools.eagle.co.nz
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2020). Lurgan Schools: The Differences We Share - Esri User Conference San Diego 2019 - VIDEO [Dataset]. https://gisinschools.eagle.co.nz/documents/81073f87c8ad42d68bfaafb8b9e99938
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Area covered
    San Diego
    Description

    For the latter part of the 20th century, Northern Ireland, officially part of the United Kingdom but sharing an island with the Republic of Ireland, saw violence between the nationalists (mostly Roman Catholic background) and unionists (mostly Protestant background). The Good Friday Agreement of 1998 sought to end this conflict, by establishing peace between these two communities and guiding how Northern Ireland should be governed. But even 20 years on, Northern Ireland remains divided. Yet, hope is on the horizon. Young students in Lurgan—a town of 25,000 south of Belfast—are using Survey123 for ArcGIS to record data across sectarian lines. After analyzing the data collected, the students from conflicting backgrounds find that they aren't that different after all. This is how change begins. Join the students of Lurgan to learn how youth are using GIS to make a difference in their community.

  6. e

    Fire events in the European Forest Fire Information System (version 2-3-1)

    • data.europa.eu
    html, tiff
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2018). Fire events in the European Forest Fire Information System (version 2-3-1) [Dataset]. https://data.europa.eu/data/datasets/022cdeed-159f-407d-be18-0dface69ef92?locale=da
    Explore at:
    tiff, htmlAvailable download formats
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Joint Research Centre
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Description

    This dataset series refers to the information on burnt areas and fire severity provided by the European Forest Fire Information System (EFFIS). ▷_How to cite: see below_◁

    1 - Burnt areas. The burnt area mapping is a service implemented since 2000 that detects and analyzes the evolution of the fire events during the fire seasons and since 2007 during the whole year. A burnt area monitored in the EFFIS system is an area damaged by a wildfire event; in the system only areas that are about 30 hectares or larger are detected. Fires occurred only on agricultural areas are not mapped. A wildfire event can start either from an agricultural area or from a wildland area. Irrespective of the ignition point, to be considered in EFFIS a fire event must damage a wildland area. This means that the fire was either generated in the natural areas by spontaneous or anthropogenic sources, or sparked in agricultural fields and went out of control up to damage wildland. The mapping provided by EFFIS is on a day-by-day basis, and integrates multiple sources: the fire news, the MODIS and VIIRS satellite thermal anomalies, the near real-time (NRT) fire monitoring based on them, and the MODIS Terra and Aqua images. The NRT Fire Monitoring is useful to obtain an early approximation of the last state of large fires with a short time-lag. A subsequent integrated analysis generates consolidated best estimates of the burnt area. Each day, a semi-automatic procedure takes as input the satellite images and runs an automated classification. The burn scars automatically detected with the thermal anomalies, along with the fire news geolocations, serve as auxiliary data for the final visual check through a computer assisted photointerpretation by a GIS analysts / expert photointerpreter who verifies the reliability of the candidate areas. Once confirmed, the final polygons of the burnt area product contains multiple information fields: affected area in hectares; spatial location (country, province, and municipality); and temporal window (start and end dates of the fires, and date of the last update of the events).

    2 - Fire severity.

    Fire severity is the degree to which a fire altered the burnt area. It is assessed by EFFIS using the Normalized Burn Ratio (NBR) index (also sensitive to chlorophyll, water content, vegetation, ash), computed for pre-fire and post-fire satellite images. The “differenced NBR” (dNBR) represents the difference between NBR values before and after the event. The estimated “differenced NBR” is remapped into five categories of severity (very low, low, moderate, high, and very high).

    How to cite - When using these data, please cite the relevant data sources. A suggested citation is included in the following:

    • San-Miguel-Ayanz, J., Houston Durrant, T., Boca, R., Libertà, G., Branco, A., de Rigo, D., Ferrari, D., Maianti, P., Artés Vivancos, T., Schulte, E., Loffler, P., Benchikha, A., Abbas, M., Humer, F., Konstantinov, V., Pešut, I., Petkoviček, S., Papageorgiou, K., Toumasis, I., Kütt, V., Kõiv, K., Ruuska, R., Anastasov, T., Timovska, M., Michaut, P., Joannelle, P., Lachmann, M., Pavlidou, K., Debreceni, P., Nagy, D., Nugent, C., Di Fonzo, M., Leisavnieks, E., Jaunķiķis, Z., Mitri, G., Repšienė, S., Assali, F., Mharzi Alaoui, H., Botnen, D., Piwnicki, J., Szczygieł, R., Janeira, M., Borges, A., Sbirnea, R., Mara, S., Eritsov, A., Longauerová, V., Jakša, J., Enriquez, E., Lopez, A., Sandahl, L., Reinhard, M., Conedera, M., Pezzatti, B., Dursun, K. T., Baltaci, U., Moffat, A., 2017. Forest fires in Europe, Middle East and North Africa 2016. Publications Office of the European Union, Luxembourg. ISBN:978-92-79-71292-0, https://doi.org/10.2760/17690

    • San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., 2013. The European Forest Fire Information System in the context of environmental policies of the European Union. Forest Policy and Economics 29, 19-25. https://doi.org/10.1016/j.forpol.2011.08.012

    • San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Libertà, G., Giovando, C., Boca, R., Sedano, F., Kempeneers, P., McInerney, D., Withmore, C., de Oliveira, S. S., Rodrigues, M., Houston Durrant, T., Corti, P., Oehler, F., Vilar, L., Amatulli, G., 2012. Comprehensive monitoring of wildfires in Europe: the European Forest Fire Information System (EFFIS). In: Tiefenbacher, J. (Ed.), Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts. InTech, Ch. 5. http://doi.org/10.5772/28441

  7. Recent Earthquakes

    • gis-fema.hub.arcgis.com
    • prep-response-portal.napsgfoundation.org
    • +11more
    Updated Dec 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Recent Earthquakes [Dataset]. https://gis-fema.hub.arcgis.com/maps/9e2f2b544c954fda9cd13b7f3e6eebce
    Explore at:
    Dataset updated
    Dec 14, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    In addition to displaying earthquakes by magnitude, this service also provide earthquake impact details. Impact is measured by population as well as models for economic and fatality loss. For more details, see: PAGER Alerts. Consumption Best Practices:

    As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cache-able relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment.When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cache-able.Update Frequency: Events are updated as frequently as every 5 minutes and are available up to 30 days with the following exceptions:

    Events with a Magnitude LESS than 4.5 are retained for 7 daysEvents with a Significance value, 'sig' field, of 600 or higher are retained for 90 days In addition to event points, ShakeMaps are also provided. These have been dissolved by Shake Intensity to reduce the Layer Complexity.The specific layers provided in this service have been Time Enabled and include: Events by Magnitude: The event’s seismic magnitude value.Contains PAGER Alert Level: USGS PAGER (Prompt Assessment of Global Earthquakes for Response) system provides an automated impact level assignment that estimates fatality and economic loss.Contains Significance Level: An event’s significance is determined by factors like magnitude, max MMI, ‘felt’ reports, and estimated impact.Shake Intensity: The Instrumental Intensity or Modified Mercalli Intensity (MMI) for available events.For field terms and technical details, see: ComCat DocumentationAlternate SymbologiesVisit the Classic USGS Feature Layer item for a Rainbow view of Shakemap features.RevisionsAug 14, 2024: Added a default Minimum scale suppression of 1:6,000,000 on Shake Intensity layer.Jul 11, 2024: Updated event popup, setting 'Tsunami Warning' text to 'Alert Possible' when flag is present. Also included hyperlink to tsunami warning center.Feb 13, 2024: Updated feed logic to remove Superseded eventsThis map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to USGS source for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  8. a

    Current Incidents

    • africageoportal.com
    • colorado-river-portal.usgs.gov
    • +28more
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2024). Current Incidents [Dataset]. https://www.africageoportal.com/maps/africageoportal::current-incidents-2
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This layer presents the best-known point and perimeter locations of wildfire occurrences within the United States over the past 7 days. Points mark a location within the wildfire area and provide current information about that wildfire. Perimeters are the line surrounding land that has been impacted by a wildfire.Consumption Best Practices:

    As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cacheable relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment. When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cacheable.Source:  Wildfire points are sourced from Integrated Reporting of Wildland-Fire Information (IRWIN) and perimeters from National Interagency Fire Center (NIFC). Current Incidents: This layer provides a near real-time view of the data being shared through the Integrated Reporting of Wildland-Fire Information (IRWIN) service. IRWIN provides data exchange capabilities between participating wildfire systems, including federal, state and local agencies. Data is synchronized across participating organizations to make sure the most current information is available. The display of the points are based on the NWCG Fire Size Classification applied to the daily acres attribute.Current Perimeters: This layer displays fire perimeters posted to the National Incident Feature Service. It is updated from operational data and may not reflect current conditions on the ground. For a better understanding of the workflows involved in mapping and sharing fire perimeter data, see the National Wildfire Coordinating Group Standards for Geospatial Operations.Update Frequency:  Every 15 minutes using the Aggregated Live Feed Methodology based on the following filters:Events modified in the last 7 daysEvents that are not given a Fire Out DateIncident Type Kind: FiresIncident Type Category: Prescribed Fire, Wildfire, and Incident Complex

    Area Covered: United StatesWhat can I do with this layer? The data includes basic wildfire information, such as location, size, environmental conditions, and resource summaries. Features can be filtered by incident name, size, or date keeping in mind that not all perimeters are fully attributed.Attribute InformationThis is a list of attributes that benefit from additional explanation. Not all attributes are listed.Incident Type Category: This is a breakdown of events into more specific categories.Wildfire (WF) -A wildland fire originating from an unplanned ignition, such as lightning, volcanos, unauthorized and accidental human caused fires, and prescribed fires that are declared wildfires.Prescribed Fire (RX) - A wildland fire originating from a planned ignition in accordance with applicable laws, policies, and regulations to meet specific objectives.Incident Complex (CX) - An incident complex is two or more individual incidents in the same general proximity that are managed together under one Incident Management Team. This allows resources to be used across the complex rather than on individual incidents uniting operational activities.IrwinID: Unique identifier assigned to each incident record in both point and perimeter layers.

    Acres: these typically refer to the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands.Discovery: An estimate of acres burning upon the discovery of the fire.Calculated or GIS:  A measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire.Daily: A measure of acres reported for a fire.Final: The measure of acres within the final perimeter of a fire. More specifically, the number of acres within the final fire perimeter of a specific, individual incident, including unburned and unburnable islands.

    Dates: the various systems contribute date information differently so not all fields will be populated for every fire.FireDiscovery: The date and time a fire was reported as discovered or confirmed to exist. May also be the start date for reporting purposes.

    Containment: The date and time a wildfire was declared contained. Control: The date and time a wildfire was declared under control.ICS209Report: The date and time of the latest approved ICS-209 report.Current: The date and time a perimeter is last known to be updated.FireOut: The date and time when a fire is declared out.ModifiedOnAge: (Integer) Computed days since event last modified.DiscoveryAge: (Integer) Computed days since event's fire discovery date.CurrentDateAge: (Integer) Computed days since perimeter last modified.CreateDateAge: (Integer) Computed days since perimeter entry created.

    GACC: A code that identifies one of the wildland fire geographic area coordination centers. A geographic area coordination center is a facility that is used for the coordination of agency or jurisdictional resources in support of one or more incidents within a geographic coordination area.Fire Mgmt Complexity: The highest management level utilized to manage a wildland fire event.Incident Management Organization: The incident management organization for the incident, which may be a Type 1, 2, or 3 Incident Management Team (IMT), a Unified Command, a Unified Command with an IMT, National Incident Management Organization (NIMO), etc. This field is null if no team is assigned.Unique Fire Identifier: Unique identifier assigned to each wildland fire. yyyy = calendar year, SSUUUU = Point Of Origin (POO) protecting unit identifier (5 or 6 characters), xxxxxx = local incident identifier (6 to 10 characters)RevisionsJan 4, 2021: Added Integer fields 'Days Since...' to Current_Incidents point layer and Current_Perimeters polygon layer. These fields are computed when the data is updated, reflecting the current number of days since each record was last updated. This will aid in making 'age' related, cache friendly queries.Mar 12, 2021: Added second set of 'Age' fields for Event and Perimeter record creation, reflecting age in Days since service data update.Apr 21, 2021: Current_Perimeters polygon layer is now being populated by NIFC's newest data source. A new field was added, 'IncidentTypeCategory' to better distinguish Incident types for Perimeters and now includes type 'CX' or Complex Fires. Five fields were not transferrable, and as a result 'Comments', 'Label', 'ComplexName', 'ComplexID', and 'IMTName' fields will be Null moving forward.Apr 26, 2021: Updated Incident Layer Symbology to better clarify events, reduce download size and overhead of symbols. Updated Perimeter Layer Symbology to better distingish between Wildfires and Prescribed Fires.May 5, 2021: Slight modification to Arcade logic for Symbology, refining Age comparison to Zero for fires in past 24-hours.Aug 16, 2021: Enabled Time Series capability on Layers (off by default) using 'Fire Discovery Date' for Incidents and 'Creation Date' for Perimeters.This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  9. W

    USA Current Wildfires

    • wifire-data.sdsc.edu
    • hub.arcgis.com
    • +1more
    esri rest, html
    Updated Jun 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2021). USA Current Wildfires [Dataset]. https://wifire-data.sdsc.edu/dataset/usa-current-wildfires
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Jun 11, 2021
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This layer presents the best-known point and perimeter locations of wildfire occurrences within the United States over the past 7 days. Points mark a location within the wildfire area and provide current information about that wildfire. Perimeters are the line surrounding land that has been impacted by a wildfire.


    Source:  Wildfire points are sourced from Integrated Reporting of Wildland-Fire Information (IRWIN) and perimeters from National Interagency Fire Center (NIFC). 

    Current Incidents: This layer provides a near real-time view of the data being shared through the Integrated Reporting of Wildland-Fire Information (IRWIN) service. IRWIN provides data exchange capabilities between participating wildfire systems, including federal, state and local agencies. Data is synchronized across participating organizations to make sure the most current information is available. The display of the points are based on the NWCG Fire Size Classification applied to the daily acres attribute.

    Current Perimeters: This layer displays fire perimeters posted to the National Incident Feature Service. It is updated from operational data and may not reflect current conditions on the ground. For a better understanding of the workflows involved in mapping and sharing fire perimeter data, see the National Wildfire Coordinating Group Standards for Geospatial Operations.

    Update Frequency:  Every 15 minutes using the Aggregated Live Feed Methodology based on the following filters:
    • Events modified in the last 7 days
    • Events that are not given a Fire Out Date
    • Incident Type Kind: Fires
    • Incident Type Category: Debris/Product Fire, Fire Rehabilitation, Incident/Event Support, Preparedness/Preposition, Prescribed Fire, Wildfire, Wildland Fire Use, Incident Complex, and Out of Area Response
    Area Covered: United States

    What can I do with this layer? 
    The data includes basic wildfire information, such as location, size, environmental conditions, and resource summaries. Features can be filtered by incident name, size, or date keeping in mind that not all perimeters are fully attributed.

    The USA Wildfires web map provides additional layers and information such as Red Flag warnings, wind speed/gust, and satellite thermal detections. This map can be used as a starting point for your own map.

    Attribute Information
    This is a list of attributes that benefit from additional explanation. Not all attributes are listed.

    Incident Type Category: This is a breakdown of events into more specific categories.

    IrwinID: Unique identifier assigned to each incident record in both point and perimeter layers.

    Acres: these typically refer to the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands.
    • Discovery: An estimate of acres burning upon the discovery of the fire.
    • Calculated or GIS:  A measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire.
    • Daily: A measure of acres reported for a fire.
    • Final: The measure of acres within the final perimeter of a fire. More specifically, the number of acres within the final fire perimeter of a specific, individual incident, including unburned and unburnable islands.
    Dates: the various systems contribute date information differently so not all fields will be populated for every fire.
    • FireDiscovery: The date and time a fire was reported as discovered or confirmed to exist. May also be the start date for reporting purposes.
    • Containment: The date and time a wildfire was declared contained.
    • Control: The date and time a wildfire was declared under control.
    • ICS209Report: The date and time of the latest approved ICS-209 report.
    • Current: The date and time a perimeter is last known to be updated.
    • FireOut: The date and time when a fire is declared out.
    GACC: A code that identifies one of the wildland fire geographic area coordination centers. A geographic area coordination center is a facility that is used for the coordination of agency or jurisdictional resources in support of one or more incidents within a geographic coordination

  10. a

    USA Current Wildfires

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • data.unep.org
    • +1more
    Updated Nov 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2022). USA Current Wildfires [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/uneplive::usa-current-wildfires/about
    Explore at:
    Dataset updated
    Nov 21, 2022
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    This layer presents the best-known point and perimeter locations of wildfire occurrences within the United States over the past 7 days. Points mark a location within the wildfire area and provide current information about that wildfire. Perimeters are the line surrounding land that has been impacted by a wildfire.Consumption Best Practices:As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.Source:  Wildfire points are sourced from Integrated Reporting of Wildland-Fire Information (IRWIN) and perimeters from National Interagency Fire Center (NIFC). Current Incidents: This layer provides a near real-time view of the data being shared through the Integrated Reporting of Wildland-Fire Information (IRWIN) service. IRWIN provides data exchange capabilities between participating wildfire systems, including federal, state and local agencies. Data is synchronized across participating organizations to make sure the most current information is available. The display of the points are based on the NWCG Fire Size Classification applied to the daily acres attribute.Current Perimeters: This layer displays fire perimeters posted to the National Incident Feature Service. It is updated from operational data and may not reflect current conditions on the ground. For a better understanding of the workflows involved in mapping and sharing fire perimeter data, see the National Wildfire Coordinating Group Standards for Geospatial Operations.Update Frequency:  Every 15 minutes using the Aggregated Live Feed Methodology based on the following filters:Events modified in the last 7 daysEvents that are not given a Fire Out DateIncident Type Kind: FiresIncident Type Category: Prescribed Fire, Wildfire, and Incident ComplexArea Covered: United StatesWhat can I do with this layer? The data includes basic wildfire information, such as location, size, environmental conditions, and resource summaries. Features can be filtered by incident name, size, or date keeping in mind that not all perimeters are fully attributed.Attribute InformationThis is a list of attributes that benefit from additional explanation. Not all attributes are listed.Incident Type Category: This is a breakdown of events into more specific categories.Wildfire (WF) -A wildland fire originating from an unplanned ignition, such as lightning, volcanos, unauthorized and accidental human caused fires, and prescribed fires that are declared wildfires.Prescribed Fire (RX) - A wildland fire originating from a planned ignition in accordance with applicable laws, policies, and regulations to meet specific objectives.Incident Complex (CX) - An incident complex is two or more individual incidents in the same general proximity that are managed together under one Incident Management Team. This allows resources to be used across the complex rather than on individual incidents uniting operational activities.IrwinID: Unique identifier assigned to each incident record in both point and perimeter layers.Acres: these typically refer to the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands.Discovery: An estimate of acres burning upon the discovery of the fire.Calculated or GIS:  A measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire.Daily: A measure of acres reported for a fire.Final: The measure of acres within the final perimeter of a fire. More specifically, the number of acres within the final fire perimeter of a specific, individual incident, including unburned and unburnable islands.Dates: the various systems contribute date information differently so not all fields will be populated for every fire.FireDiscovery: The date and time a fire was reported as discovered or confirmed to exist. May also be the start date for reporting purposes. Containment: The date and time a wildfire was declared contained. Control: The date and time a wildfire was declared under control.ICS209Report: The date and time of the latest approved ICS-209 report.Current: The date and time a perimeter is last known to be updated.FireOut: The date and time when a fire is declared out.ModifiedOnAge: (Integer) Computed days since event last modified.DiscoveryAge: (Integer) Computed days since event's fire discovery date.CurrentDateAge: (Integer) Computed days since perimeter last modified.CreateDateAge: (Integer) Computed days since perimeter entry created.GACC: A code that identifies one of the wildland fire geographic area coordination centers. A geographic area coordination center is a facility that is used for the coordination of agency or jurisdictional resources in support of one or more incidents within a geographic coordination area.Fire Mgmt Complexity: The highest management level utilized to manage a wildland fire event.Incident Management Organization: The incident management organization for the incident, which may be a Type 1, 2, or 3 Incident Management Team (IMT), a Unified Command, a Unified Command with an IMT, National Incident Management Organization (NIMO), etc. This field is null if no team is assigned.Unique Fire Identifier: Unique identifier assigned to each wildland fire. yyyy = calendar year, SSUUUU = Point Of Origin (POO) protecting unit identifier (5 or 6 characters), xxxxxx = local incident identifier (6 to 10 characters)RevisionsJan 4, 2021: Added Integer fields 'Days Since...' to Current_Incidents point layer and Current_Perimeters polygon layer. These fields are computed when the data is updated, reflecting the current number of days since each record was last updated. This will aid in making 'age' related, cache friendly queries.Mar 12, 2021: Added second set of 'Age' fields for Event and Perimeter record creation, reflecting age in Days since service data update.Apr 21, 2021: Current_Perimeters polygon layer is now being populated by NIFC's newest data source. A new field was added, 'IncidentTypeCategory' to better distinguish Incident types for Perimeters and now includes type 'CX' or Complex Fires. Five fields were not transferrable, and as a result 'Comments', 'Label', 'ComplexName', 'ComplexID', and 'IMTName' fields will be Null moving forward.Apr 26, 2021: Updated Incident Layer Symbology to better clarify events, reduce download size and overhead of symbols. Updated Perimeter Layer Symbology to better distingish between Wildfires and Prescribed Fires.May 5, 2021: Slight modification to Arcade logic for Symbology, refining Age comparison to Zero for fires in past 24-hours.Aug 16, 2021: Enabled Time Series capability on Layers (off by default) using 'Fire Discovery Date' for Incidents and 'Creation Date' for Perimeters.This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  11. a

    vewPubArt Events

    • aurora-public-arts-cityofaurora.hub.arcgis.com
    • opendata-cityofaurora.hub.arcgis.com
    Updated Feb 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Aurora GIS Online (2023). vewPubArt Events [Dataset]. https://aurora-public-arts-cityofaurora.hub.arcgis.com/items/ac342ba02ee141d8aad2aef59e0099d8
    Explore at:
    Dataset updated
    Feb 14, 2023
    Dataset authored and provided by
    City of Aurora GIS Online
    Description

    Aurora Public Art manages the City's gallery, as well as murals and outdoor installations seasonally. This visual only lists the top 3 most visited events of the year. The Month-to-Month Comparison dashboard lists the number of special events that have been held each month.

  12. a

    Volcanoes events – Pacific

    • hub.arcgis.com
    • sdgs-uneplive.opendata.arcgis.com
    Updated Oct 16, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2015). Volcanoes events – Pacific [Dataset]. https://hub.arcgis.com/maps/d1253be78e394fd0a7ee87474e00f5cf
    Explore at:
    Dataset updated
    Oct 16, 2015
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, which are within an extended area of the northern hemisphere centered on the United States. The data are a subset of data available from the Global Volcanism Program, Smithsonian Institution at http://www.volcano.si.edu/world/summary.cfm. This file is a replacement for the April 2004 map layer. These data are intended for geographic display and analysis at the national level, and for large regional areas. The data should be displayed and analyzed at scales appropriate for 1:2,000,000-scale data. Further information on the Global Volcanism Program of the Smithsonian Institution is available at http://www.volcano.si.edu/The International Association for Volcanology and Chemistry of Earth's Interior (IAVCEI), The World Organization of Volcano Observatories (WOVO), and the Global Volcano Model (GVM) have sanctioned the Global Volcanism Program (GVP) to assign official names and numbers to the world's volcanoes. The purpose of the numbers is to prevent ambiguity regarding the name and location of volcanoes that may have non-unique names, or that are known by multiple names.The original VNums were based on a system developed in the 1950's for the IAVCEI Catalog of Active Volcanoes of the World (CAVW). GVP policy had been to embed significant geographical, historical, and age information in the numbers. As a result GVP often changed VNums, most frequently to accommodate newly recognized volcanoes in a particular geographical region, which over time undermined the goal of preventing ambiguity.After moving VOTW to a new database platform, we developed a new VNum system. During this process GVP staff took into account the needs of the International Civil Aviation Organization (ICAO) and other stakeholders to have numbers compatible with modern computing systems. Holocene, Pleistocene, and Tertiary volcanoes all fall under the new unified numbering system, allowing interoperability between VOTW and new databases under development globally (e.g. WOVOdat, LaMEVE). Letters and characters (hyphens and equals signs) have been eliminated. Secondary numbers have been added for subfeatures associated with each volcano. None of the new numbers start with 0 or 1 to avoid confusion with the legacy system. While a connection remains to the older system, the geographic link to CAVW regions and subregions is no longer mandatory.We feel that this change is in the best long-term interest of the community.

  13. USA Current Wildfires

    • hub.arcgis.com
    • resilience.climate.gov
    • +13more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Current Wildfires [Dataset]. https://hub.arcgis.com/maps/d957997ccee7408287a963600a77f61f
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer presents the best-known point and perimeter locations of wildfire occurrences within the United States over the past 7 days. Points mark a location within the wildfire area and provide current information about that wildfire. Perimeters are the line surrounding land that has been impacted by a wildfire.Consumption Best Practices:

    As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cacheable relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment. When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cacheable.Source:  Wildfire points are sourced from Integrated Reporting of Wildland-Fire Information (IRWIN) and perimeters from National Interagency Fire Center (NIFC). Current Incidents: This layer provides a near real-time view of the data being shared through the Integrated Reporting of Wildland-Fire Information (IRWIN) service. IRWIN provides data exchange capabilities between participating wildfire systems, including federal, state and local agencies. Data is synchronized across participating organizations to make sure the most current information is available. The display of the points are based on the NWCG Fire Size Classification applied to the daily acres attribute.Current Perimeters: This layer displays fire perimeters posted to the National Incident Feature Service. It is updated from operational data and may not reflect current conditions on the ground. For a better understanding of the workflows involved in mapping and sharing fire perimeter data, see the National Wildfire Coordinating Group Standards for Geospatial Operations.Update Frequency:  Every 15 minutes using the Aggregated Live Feed Methodology based on the following filters:Events modified in the last 7 daysEvents that are not given a Fire Out DateIncident Type Kind: FiresIncident Type Category: Prescribed Fire, Wildfire, and Incident Complex

    Area Covered: United StatesWhat can I do with this layer? The data includes basic wildfire information, such as location, size, environmental conditions, and resource summaries. Features can be filtered by incident name, size, or date keeping in mind that not all perimeters are fully attributed.Attribute InformationThis is a list of attributes that benefit from additional explanation. Not all attributes are listed.Incident Type Category: This is a breakdown of events into more specific categories.Wildfire (WF) -A wildland fire originating from an unplanned ignition, such as lightning, volcanos, unauthorized and accidental human caused fires, and prescribed fires that are declared wildfires.Prescribed Fire (RX) - A wildland fire originating from a planned ignition in accordance with applicable laws, policies, and regulations to meet specific objectives.Incident Complex (CX) - An incident complex is two or more individual incidents in the same general proximity that are managed together under one Incident Management Team. This allows resources to be used across the complex rather than on individual incidents uniting operational activities.IrwinID: Unique identifier assigned to each incident record in both point and perimeter layers.

    Acres: these typically refer to the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands.Discovery: An estimate of acres burning upon the discovery of the fire.Calculated or GIS:  A measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire.Daily: A measure of acres reported for a fire.Final: The measure of acres within the final perimeter of a fire. More specifically, the number of acres within the final fire perimeter of a specific, individual incident, including unburned and unburnable islands.

    Dates: the various systems contribute date information differently so not all fields will be populated for every fire.FireDiscovery: The date and time a fire was reported as discovered or confirmed to exist. May also be the start date for reporting purposes.

    Containment: The date and time a wildfire was declared contained. Control: The date and time a wildfire was declared under control.ICS209Report: The date and time of the latest approved ICS-209 report.Current: The date and time a perimeter is last known to be updated.FireOut: The date and time when a fire is declared out.ModifiedOnAge: (Integer) Computed days since event last modified.DiscoveryAge: (Integer) Computed days since event's fire discovery date.CurrentDateAge: (Integer) Computed days since perimeter last modified.CreateDateAge: (Integer) Computed days since perimeter entry created.

    GACC: A code that identifies one of the wildland fire geographic area coordination centers. A geographic area coordination center is a facility that is used for the coordination of agency or jurisdictional resources in support of one or more incidents within a geographic coordination area.Fire Mgmt Complexity: The highest management level utilized to manage a wildland fire event.Incident Management Organization: The incident management organization for the incident, which may be a Type 1, 2, or 3 Incident Management Team (IMT), a Unified Command, a Unified Command with an IMT, National Incident Management Organization (NIMO), etc. This field is null if no team is assigned.Unique Fire Identifier: Unique identifier assigned to each wildland fire. yyyy = calendar year, SSUUUU = Point Of Origin (POO) protecting unit identifier (5 or 6 characters), xxxxxx = local incident identifier (6 to 10 characters)RevisionsJan 4, 2021: Added Integer fields 'Days Since...' to Current_Incidents point layer and Current_Perimeters polygon layer. These fields are computed when the data is updated, reflecting the current number of days since each record was last updated. This will aid in making 'age' related, cache friendly queries.Mar 12, 2021: Added second set of 'Age' fields for Event and Perimeter record creation, reflecting age in Days since service data update.Apr 21, 2021: Current_Perimeters polygon layer is now being populated by NIFC's newest data source. A new field was added, 'IncidentTypeCategory' to better distinguish Incident types for Perimeters and now includes type 'CX' or Complex Fires. Five fields were not transferrable, and as a result 'Comments', 'Label', 'ComplexName', 'ComplexID', and 'IMTName' fields will be Null moving forward.Apr 26, 2021: Updated Incident Layer Symbology to better clarify events, reduce download size and overhead of symbols. Updated Perimeter Layer Symbology to better distingish between Wildfires and Prescribed Fires.May 5, 2021: Slight modification to Arcade logic for Symbology, refining Age comparison to Zero for fires in past 24-hours.Aug 16, 2021: Enabled Time Series capability on Layers (off by default) using 'Fire Discovery Date' for Incidents and 'Creation Date' for Perimeters.This layer is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  14. a

    Episcopal Conference Boundaries (Administrative 1)

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Sep 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Episcopal Conference Boundaries (Administrative 1) [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/datasets/episcopal-conference-boundaries-administrative-1
    Explore at:
    Dataset updated
    Sep 21, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/The Catholic Leadership global maps information is derived from the Annuario Pontificio, which is curated and published by the Vatican Statistics Office annually, and digitized by David Cheney at Catholic-Hierarchy.org -- updated are supplemented with diocesan and news announcements. GoodLands maps this into global ecclesiastical boundaries. Admin 1 Ecclesiastical Territories:Burhans, Molly A., Cheney, David M., Gerlt, R.. . “Admin 1 Ecclesiastical Territories For Web”. Scale not given. Version 1.2. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Derived from:Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.

  15. a

    Volcanoes events – Aims

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • sdgs-uneplive.opendata.arcgis.com
    Updated Oct 16, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2015). Volcanoes events – Aims [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/uneplive::volcanoes-events-aims/about
    Explore at:
    Dataset updated
    Oct 16, 2015
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    This map layer includes Holocene volcanoes, which are those thought to be active in the last 10,000 years, which are within an extended area of the northern hemisphere centered on the United States. The data are a subset of data available from the Global Volcanism Program, Smithsonian Institution at http://www.volcano.si.edu/world/summary.cfm. This file is a replacement for the April 2004 map layer. These data are intended for geographic display and analysis at the national level, and for large regional areas. The data should be displayed and analyzed at scales appropriate for 1:2,000,000-scale data. Further information on the Global Volcanism Program of the Smithsonian Institution is available at http://www.volcano.si.edu/The International Association for Volcanology and Chemistry of Earth's Interior (IAVCEI), The World Organization of Volcano Observatories (WOVO), and the Global Volcano Model (GVM) have sanctioned the Global Volcanism Program (GVP) to assign official names and numbers to the world's volcanoes. The purpose of the numbers is to prevent ambiguity regarding the name and location of volcanoes that may have non-unique names, or that are known by multiple names.The original VNums were based on a system developed in the 1950's for the IAVCEI Catalog of Active Volcanoes of the World (CAVW). GVP policy had been to embed significant geographical, historical, and age information in the numbers. As a result GVP often changed VNums, most frequently to accommodate newly recognized volcanoes in a particular geographical region, which over time undermined the goal of preventing ambiguity.After moving VOTW to a new database platform, we developed a new VNum system. During this process GVP staff took into account the needs of the International Civil Aviation Organization (ICAO) and other stakeholders to have numbers compatible with modern computing systems. Holocene, Pleistocene, and Tertiary volcanoes all fall under the new unified numbering system, allowing interoperability between VOTW and new databases under development globally (e.g. WOVOdat, LaMEVE). Letters and characters (hyphens and equals signs) have been eliminated. Secondary numbers have been added for subfeatures associated with each volcano. None of the new numbers start with 0 or 1 to avoid confusion with the legacy system. While a connection remains to the older system, the geographic link to CAVW regions and subregions is no longer mandatory.We feel that this change is in the best long-term interest of the community.

  16. Recent Earthquakes - Classic USGS Rendering

    • hub.arcgis.com
    • keep-cool-global-community.hub.arcgis.com
    • +1more
    Updated Sep 7, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Recent Earthquakes - Classic USGS Rendering [Dataset]. https://hub.arcgis.com/maps/5b564bbefa2c482982de7f092dc4f9c9
    Explore at:
    Dataset updated
    Sep 7, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Our Recent Earthquakes - Live Feed Service updated with the new 'Feature Display Order' capability, now available when using the new Map Viewer. Allowing it to render features based on the Magnitude Order for Quake Events, and Intensity Order for Shakemap features. This brings attention to critical events and greatly improves Feature visibility!In addition to displaying earthquakes by magnitude, this service also provide earthquake impact details. Impact is measured by population as well as models for economic and fatality loss. For more details, see: PAGER Alerts.
    Consumption Best Practices:

    As a service that is subject to very high usage, ensure peak performance and accessibility of your maps and apps by avoiding the use of non-cache-able relative Date/Time field filters. To accommodate filtering events by Date/Time, we suggest using the included "Age" fields that maintain the number of days or hours since a record was created or last modified, compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be efficiently provided to users in a high demand service environment.When ingesting this service in your applications, avoid using POST requests whenever possible. These requests can compromise performance and scalability during periods of high usage because they too are not cache-able.Update Frequency: Events are updated as frequently as every 5 minutes and are available up to 30 days with the following exceptions:

    Events with a Magnitude LESS than 4.5 are retained for 7 daysEvents with a Significance value, 'sig' field, of 600 or higher are retained for 90 days In addition to event points, ShakeMaps are also provided. These have been dissolved by Shake Intensity to reduce the Layer Complexity.The specific layers provided in this service have been Time Enabled and include: Events by Magnitude: The event’s seismic magnitude value.Contains PAGER Alert Level: USGS PAGER (Prompt Assessment of Global Earthquakes for Response) system provides an automated impact level assignment that estimates fatality and economic loss.Contains Significance Level: An event’s significance is determined by factors like magnitude, max MMI, ‘felt’ reports, and estimated impact.Shake Intensity: The Instrumental Intensity or Modified Mercalli Intensity (MMI) for available events.For field terms and technical details, see: ComCat DocumentationRevisionsJul 11, 2024: Updated event popup, setting 'Tsunami Warning' text to 'Alert Possible' when flag is present. Also included hyperlink to tsunami warning center.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to USGS source for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!

  17. a

    Hydrography - NHD Point Events

    • hub.arcgis.com
    • geo.wa.gov
    Updated Dec 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington State Department of Ecology (2023). Hydrography - NHD Point Events [Dataset]. https://hub.arcgis.com/maps/waecy::hydrography-nhd-point-events
    Explore at:
    Dataset updated
    Dec 27, 2023
    Dataset authored and provided by
    Washington State Department of Ecology
    Area covered
    Description

    NHDPointEventFC which contains points that are tied to a specific location on a stream network by a reachcode and measure and include Stream Gages, Dams, and NWIS Water Quality monitoring locations.NHDPointEventFC should not be confused with NHDPoint which contains points representing NHD hydrographic landmark features. Some of these are: Rapids, Waterfall, SpringSeep, Rock. Gate, Well.The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.A complete Data Catalog is available at: https://nhd.usgs.gov/userguide.html?url=NHD_User_Guide/Feature_Catalog/NHD_Feature_Catalog.htm

  18. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ISPRA - Italian National Institute for Environmental Protection and Research (2025). Events and Probabilities [Dataset]. https://metadata.europe-geology.eu/record/basic/e645855c332be48b6a52ed4e5e7b15f688caeb55

Events and Probabilities

Explore at:
Dataset updated
Apr 7, 2025
Dataset authored and provided by
ISPRA - Italian National Institute for Environmental Protection and Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

These datasets represent a systematic collection of harmonized data concerning geological events. GIS layers display data on the Portal at a resolution of 1:100,000 and 1:250,000 scale concerning earthquakes, submarine landslides, volcanoes, tsunamis, fluid emissions and Quaternary tectonics, subdivided according to their geometry (polygons, points and lines). They provide information on the type of events which have taken place in the past and might potentially occur again. Where available, details include dimensions, state of activity, morphological type and lithology. The elaboration of guidelines to compile GIS layers was aimed at identifying parameters to be used to thoroughly characterize each event. Particular attention has been devoted to the definition of the Attribute tables in order to achieve the best degree of harmonization and standardization complying with the European INSPIRE Directive. Shapefiles can be downloaded from the Portal and used locally in order to browse through the details of the different features, consulting their Attribute tables. Information contained therein provide an inventory of available data which can be fruitfully applied in the management of coastal areas and support planning of further surveys. By combining the diverse information contained in the different layers, it might be possible to elaborate additional thematic maps which could support further research. Moreover, they potentially represent a useful tool to increase awareness of the hazards which might affect coastal areas. Data sources include detailed information held by the Project Partners plus any further publicly available third-party data (last update Sep. 2021). All products delivered by Partners have been collated, verified and validated in order to achieve the best degree of harmonization and INSPIRE compliance. Each layer is complemented by an Attribute table which provides, in addition to the location, type of geological event and its references (mandatory), further information for each occurrence (where available). Since features considered within WP6 have a scattered distribution, the additional layer “Geological events distribution” provides basic information on areas of occurrences, no occurrences and no data for the marine areas surrounding European countries.

Search
Clear search
Close search
Google apps
Main menu