100+ datasets found
  1. G

    Geographical Mapping Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Geographical Mapping Software Report [Dataset]. https://www.marketreportanalytics.com/reports/geographical-mapping-software-54872
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming geographical mapping software market! This in-depth analysis reveals key trends, growth drivers, regional insights, and leading companies shaping the future of geospatial technology. Learn about market size, CAGR, and top applications in urban planning, geological exploration, and more.

  2. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Nov 25, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Guisguis Port Sariaya, Quezon
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  3. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • home-ecgis.hub.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  4. v

    VT Service - Best of Color Imagery

    • anrgeodata.vermont.gov
    Updated Feb 4, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT Center for Geographic Information (2014). VT Service - Best of Color Imagery [Dataset]. https://anrgeodata.vermont.gov/datasets/881561575869414e965df329915b97ed
    Explore at:
    Dataset updated
    Feb 4, 2014
    Dataset authored and provided by
    VT Center for Geographic Information
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This "Best of" Color image service (web mercator projection) allows you to stream Vermont's best available imagery into your GIS or web mapping application. HOW TO USE: The service is available by plugging in the following REST endpoint into your browser, web mapping application, or GIS software.https://maps.vcgi.vermont.gov/arcgis/rest/services/EGC_services/IMG_VCGI_CLR_WM_CACHE/ImageServer NOTE: Clicking the "Download" button to the right will not actually give you the data OR access to the service. Ignore the "Download" button and use the URL above instead. HELP: Refer to the following video describing how you can use VCGI's services in ArcGIS or QGIS.

  5. Digital Geologic-GIS Map of Great Basin National Park and Vicinity, Nevada...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Great Basin National Park and Vicinity, Nevada (NPS, GRD, GRI, GRBA, GRBA digital map) adapted from Stanford University and the Stanford Geological Survey unpublished digital data by Miller and the Stanford Geological Survey (2007) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-great-basin-national-park-and-vicinity-nevada-nps-grd-gri-grba
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geologic-GIS Map of Great Basin National Park and Vicinity, Nevada is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (grba_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (grba_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grba_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grba_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (grba_geology_metadata_faq.pdf). Please read the grba_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Stanford University and the Stanford Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (grba_geology_metadata.txt or grba_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  6. U

    Underground Utility Mapping Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Underground Utility Mapping Software Report [Dataset]. https://www.datainsightsmarket.com/reports/underground-utility-mapping-software-1970775
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming underground utility mapping software market! Learn about its $2.5B valuation (2025), 12% CAGR, key drivers, top companies, and future trends shaping this crucial industry. Explore market segmentation and regional analysis for informed investment decisions.

  7. Digital Geologic-GIS Map of Great Sand Dunes National Park, Colorado (NPS,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Oct 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Great Sand Dunes National Park, Colorado (NPS, GRD, GRI, GRSA, GRSA digital map) adapted from a U.S. Geological Survey Scientific Investigations Map by Madole, VanSistine and Romig (2016) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-great-sand-dunes-national-park-colorado-nps-grd-gri-grsa-grsa-
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Colorado
    Description

    The Digital Geologic-GIS Map of Great Sand Dunes National Park, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (grsa_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (grsa_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grsa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grsa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (grsa_geology_metadata_faq.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (grsa_geology_metadata.txt or grsa_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:35,000 and United States National Map Accuracy Standards features are within (horizontally) 17.8 meters or 58.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +1more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  9. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • geodata.colorado.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  10. Geologic Map of Ceres [Dawn Mission] - Global dataset based on the 15...

    • zenodo.org
    pdf, txt, zip
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Nass; Andrea Nass (2024). Geologic Map of Ceres [Dawn Mission] - Global dataset based on the 15 individual quadrangle maps [Dataset]. http://doi.org/10.5281/zenodo.7989803
    Explore at:
    pdf, txt, zipAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrea Nass; Andrea Nass
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Between 2011 and 2018, the NASA Dawn spacecraft visited asteroid (4) Vesta and dwarf planet (1) Ceres to investigate the surfaces of both protoplanets through optical and hyperspectral imaging and their composition through gamma-ray and neutron spectroscopy from orbit.
    For both Vesta and Ceres, a geologic mapping investigation was realized based on optical and hyperspectral data as well as a photogrammetrically derived digital terrain model. For the global mapping investigation, mappers employed Geographic Information System (GIS) software to map 15 quadrangles. The results were published as individual map sheets alongside research papers discussing the geologic evolution. The style of collaborative mapping to produce a consistent global view represented by individual quadrangle maps is comparably new despite abundantly available mapping experiences. Ongoing data acquisition during mapping created considerable challenges for the coordination and homogenization of mapping results.

    To handle this issue simultaniously to the active mission phase as best as possible a GIS-based environment was needed in order to conduct one homogenous dataset (w.r.t. geometrical and visual character) that represents one geologically-consistent map at the end. Therefore, the mapping team was supported by an predefined mapping template which was generated in the proprietary ArcGIS environment. The template contains different layers (called feature classes) for the different object/geomoetry types and contains predefined attribute values as well as cartographic symbols. The cartographic symbols follow international standards as far as possible. The colours for the geological units refering to established colour values used in geologic maps, e.g., standardized planetary maps generated by USGS, but considering individual needs and requests within the mapping team, too.

    The data product pubished here based on the mentioned GIS-based template and represents the merged global GIS-dataset of the 15 individually conducted geological maps of Ceres within the Dawn Mission. The detailed descriptions of all those scientific interpretions are published in the papers listed within the reference section. Based on team-internal decisions the dataset is provided within the properitary format of ESRIs ArcGIS environment. However, in order to use the data product also outside this software environment, single shapefiles with additional information about the symbology are also included. All available data are available within the compressed folder and the readme-file gives some informative remarks for the useage of the data

    Additional remark: The data set provided here does not represent a holistic (in term of topological and scientifical) unification of the 15 individual mapping data as primarily geometric and content-related inconsistencies at quadrangle boundaries prohibited a unified compilation. On the one side, this is due to the fact that the the aim of the mapping project was not to produce a uniform global map, but rather to gain a first impression of the geology of Ceres and publish associated scientific papers. On the other side, that the geological mapping project ran parallel to the regular mission phase, and a finalizing review process for creating a global geological dataset wasn´t scheduled in the mission planning. This deficiency cannot be remedied simply by merging topological missmatches or changing the visualisation. Rather it will require ongoing and detailed scientific discussion of the interpretation results, which could be solved within an updating version of the global map.

  11. a

    RTB Mapping application

    • hub.arcgis.com
    • data.amerigeoss.org
    • +1more
    Updated Aug 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). RTB Mapping application [Dataset]. https://hub.arcgis.com/datasets/81ea77e8b5274b879b9d71010d8743aa
    Explore at:
    Dataset updated
    Aug 12, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    RTB Maps is a cloud-based electronic Atlas. We used ArGIS 10 for Desktop with Spatial Analysis Extension, ArcGIS 10 for Server on-premise, ArcGIS API for Javascript, IIS web services based on .NET, and ArcGIS Online combining data on the cloud with data and applications on our local server to develop an Atlas that brings together many of the map themes related to development of roots, tubers and banana crops. The Atlas is structured to allow our participating scientists to understand the distribution of the crops and observe the spatial distribution of many of the obstacles to production of these crops. The Atlas also includes an application to allow our partners to evaluate the importance of different factors when setting priorities for research and development. The application uses weighted overlay analysis within a multi-criteria decision analysis framework to rate the importance of factors when establishing geographic priorities for research and development.Datasets of crop distribution maps, agroecology maps, biotic and abiotic constraints to crop production, poverty maps and other demographic indicators are used as a key inputs to multi-objective criteria analysis.Further metadata/references can be found here: http://gisweb.ciat.cgiar.org/RTBmaps/DataAvailability_RTBMaps.htmlDISCLAIMER, ACKNOWLEDGMENTS AND PERMISSIONS:This service is provided by Roots, Tubers and Bananas CGIAR Research Program as a public service. Use of this service to retrieve information constitutes your awareness and agreement to the following conditions of use.This online resource displays GIS data and query tools subject to continuous updates and adjustments. The GIS data has been taken from various, mostly public, sources and is supplied in good faith.RTBMaps GIS Data Disclaimer• The data used to show the Base Maps is supplied by ESRI.• The data used to show the photos over the map is supplied by Flickr.• The data used to show the videos over the map is supplied by Youtube.• The population map is supplied to us by CIESIN, Columbia University and CIAT.• The Accessibility map is provided by Global Environment Monitoring Unit - Joint Research Centre of the European Commission. Accessibility maps are made for a specific purpose and they cannot be used as a generic dataset to represent "the accessibility" for a given study area.• Harvested area and yield for banana, cassava, potato, sweet potato and yam for the year 200, is provided by EarthSat (University of Minnesota’s Institute on the Environment-Global Landscapes initiative and McGill University’s Land Use and the Global Environment lab). Dataset from Monfreda C., Ramankutty N., and Foley J.A. 2008.• Agroecology dataset: global edapho-climatic zones for cassava based on mean growing season, temperature, number of dry season months, daily temperature range and seasonality. Dataset from CIAT (Carter et al. 1992)• Demography indicators: Total and Rural Population from Center for International Earth Science Information Network (CIESIN) and CIAT 2004.• The FGGD prevalence of stunting map is a global raster datalayer with a resolution of 5 arc-minutes. The percentage of stunted children under five years old is reported according to the lowest available sub-national administrative units: all pixels within the unit boundaries will have the same value. Data have been compiled by FAO from different sources: Demographic and Health Surveys (DHS), UNICEF MICS, WHO Global Database on Child Growth and Malnutrition, and national surveys. Data provided by FAO – GIS Unit 2007.• Poverty dataset: Global poverty headcount and absolute number of poor. Number of people living on less than $1.25 or $2.00 per day. Dataset from IFPRI and CIATTHE RTBMAPS GROUP MAKES NO WARRANTIES OR GUARANTEES, EITHER EXPRESSED OR IMPLIED AS TO THE COMPLETENESS, ACCURACY, OR CORRECTNESS OF THE DATA PORTRAYED IN THIS PRODUCT NOR ACCEPTS ANY LIABILITY, ARISING FROM ANY INCORRECT, INCOMPLETE OR MISLEADING INFORMATION CONTAINED THEREIN. ALL INFORMATION, DATA AND DATABASES ARE PROVIDED "AS IS" WITH NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO, FITNESS FOR A PARTICULAR PURPOSE. By accessing this website and/or data contained within the databases, you hereby release the RTB group and CGCenters, its employees, agents, contractors, sponsors and suppliers from any and all responsibility and liability associated with its use. In no event shall the RTB Group or its officers or employees be liable for any damages arising in any way out of the use of the website, or use of the information contained in the databases herein including, but not limited to the RTBMaps online Atlas product.APPLICATION DEVELOPMENT:• Desktop and web development - Ernesto Giron E. (GeoSpatial Consultant) e.giron.e@gmail.com• GIS Analyst - Elizabeth Barona. (Independent Consultant) barona.elizabeth@gmail.comCollaborators:Glenn Hyman, Bernardo Creamer, Jesus David Hoyos, Diana Carolina Giraldo Soroush Parsa, Jagath Shanthalal, Herlin Rodolfo Espinosa, Carlos Navarro, Jorge Cardona and Beatriz Vanessa Herrera at CIAT, Tunrayo Alabi and Joseph Rusike from IITA, Guy Hareau, Reinhard Simon, Henry Juarez, Ulrich Kleinwechter, Greg Forbes, Adam Sparks from CIP, and David Brown and Charles Staver from Bioversity International.Please note these services may be unavailable at times due to maintenance work.Please feel free to contact us with any questions or problems you may be having with RTBMaps.

  12. U

    Underground Utilities Mapping Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Aug 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Underground Utilities Mapping Services Report [Dataset]. https://www.archivemarketresearch.com/reports/underground-utilities-mapping-services-561696
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Aug 6, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Underground Utilities Mapping Services market! Learn about its $15 billion valuation, 7% CAGR, key drivers (urbanization, tech advancements), and top players. Explore market trends and future projections in this in-depth analysis.

  13. G

    Fiber Route Automated GIS Mapping Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Fiber Route Automated GIS Mapping Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/fiber-route-automated-gis-mapping-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Oct 3, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Fiber Route Automated GIS Mapping Market Outlook



    According to our latest research, the global Fiber Route Automated GIS Mapping market size in 2024 stands at USD 2.13 billion, registering robust momentum across infrastructure sectors. The market is set to expand at a CAGR of 13.4% between 2025 and 2033, driven by the surging demand for advanced network visualization and real-time asset management. By 2033, the Fiber Route Automated GIS Mapping market is projected to reach USD 6.57 billion, underscoring the critical role of automated GIS tools in modernizing fiber optic deployment, operations, and maintenance. This growth is primarily attributed to the increasing need for efficient network planning, route optimization, and the rising complexity of fiber infrastructure globally.




    The Fiber Route Automated GIS Mapping market is experiencing significant growth due to the rapid expansion of fiber optic networks to support high-speed data transmission and the proliferation of 5G infrastructure. As telecommunications providers and utility companies race to meet escalating bandwidth demands, there is an acute need for precise, automated, and scalable GIS mapping solutions. These systems streamline the entire lifecycle of fiber network management, from initial route planning and design to ongoing maintenance and optimization. The integration of advanced GIS mapping with AI-driven analytics enables organizations to reduce operational costs, minimize manual errors, and accelerate time-to-market for new network rollouts. Furthermore, the increasing complexity of urban and rural network environments necessitates the adoption of automated GIS mapping to ensure seamless connectivity and optimal resource utilization.




    Another key driver for the Fiber Route Automated GIS Mapping market is the growing emphasis on digital transformation and the adoption of smart infrastructure by governments and private enterprises alike. As cities and municipalities invest in smart city initiatives, the need for robust fiber networks and efficient asset management becomes paramount. Automated GIS mapping tools offer unparalleled visibility into existing infrastructure, enabling stakeholders to make informed decisions regarding network expansion, upgrades, and maintenance schedules. Additionally, regulatory mandates for accurate documentation and reporting of network assets are propelling the adoption of automated GIS solutions, as they facilitate compliance and improve transparency. The convergence of IoT, cloud computing, and big data analytics further amplifies the value proposition of automated GIS mapping in the fiber route domain.




    The surge in demand for real-time monitoring and predictive maintenance is also fueling the expansion of the Fiber Route Automated GIS Mapping market. As fiber networks become more integral to mission-critical applications across sectors such as transportation, healthcare, and finance, ensuring network reliability and minimizing downtime becomes a top priority. Automated GIS mapping platforms enable continuous monitoring of network health, rapid identification of faults or vulnerabilities, and proactive maintenance interventions. This not only enhances service quality and customer satisfaction but also extends the lifespan of network assets. The integration of mobile GIS applications and remote sensing technologies further empowers field teams to access and update network data in real time, fostering operational agility and resilience.




    From a regional perspective, North America currently leads the Fiber Route Automated GIS Mapping market, driven by substantial investments in broadband infrastructure, 5G deployments, and smart city projects. However, the Asia Pacific region is poised for the fastest growth, with a projected CAGR of over 15.2% through 2033, fueled by rapid urbanization, government-led digital initiatives, and expanding telecom networks in countries like China, India, and Japan. Europe follows closely, benefiting from ambitious fiber-to-the-home (FTTH) rollouts and stringent regulatory frameworks promoting network transparency and efficiency. While Latin America and Middle East & Africa are still emerging markets, they present significant long-term opportunities as infrastructure development accelerates and digital connectivity becomes a strategic priority.



    <div class="free_sa

  14. Digital Geomorphic-GIS Map of the Great Swash to Quork Hammock Area...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geomorphic-GIS Map of the Great Swash to Quork Hammock Area (1:10,000 scale 2006 mapping), North Carolina (NPS, GRD, GRI, CAHA, GSQH_geomorphology digital map) adapted from a East Carolina University unpublished digital data map by Ames and Riggs (2006) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-geomorphic-gis-map-of-the-great-swash-to-quork-hammock-area-1-10000-scale-2006-map
    Explore at:
    Dataset updated
    Oct 5, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    North Carolina, Quork Hammock, The Great Swash
    Description

    The Digital Geomorphic-GIS Map of the Great Swash to Quork Hammock Area (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (gsqh_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (gsqh_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (gsqh_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gsqh_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsqh_geomorphology_metadata.txt or gsqh_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  15. Healthcare Data

    • caliper.com
    cdf, dwg, dxf, gdb +9
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caliper Corporation (2024). Healthcare Data [Dataset]. https://www.caliper.com/mapping-software-data/maptitude-healthcare-data.htm
    Explore at:
    sql server mssql, ntf, postgis, cdf, kmz, shp, kml, geojson, dwg, sdo, dxf, gdb, postgresqlAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset authored and provided by
    Caliper Corporationhttp://www.caliper.com/
    License

    https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

    Time period covered
    2024
    Area covered
    United States
    Description

    Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.

  16. a

    2022 Best Application

    • agic-symposium-maps-and-apps-agic.hub.arcgis.com
    Updated Aug 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AZGeo ArcGIS Online (AGO) (2022). 2022 Best Application [Dataset]. https://agic-symposium-maps-and-apps-agic.hub.arcgis.com/items/62b8f400dc6a46f3aeb9e117d3029634
    Explore at:
    Dataset updated
    Aug 23, 2022
    Dataset authored and provided by
    AZGeo ArcGIS Online (AGO)
    Description

    This interactive application was created to share the incredible adventure my wife Liz and I undertook for our Honeymoon to Yellowstone National Park for it's 150th Anniversary. Along the trip we traveled nearly 4,000 miles to visit 6 National Parks, numerous trails and campsites, dozens of geysers, hot springs, breweries, etc.

    A survey was created via Survey123 Connect to capture the data along our journey. The web application was built in Experience Builder to emulate a dashboard with the Feature Info widget to display survey records including media starting from the beginning of the journey and a List widget to further aid in navigating the records. Since this application was designed in Experience Builder, it is also Tablet and Mobile friendly but I recommend viewing the application from a desktop for the best viewing and navigation experience.

  17. GIS Map of Mosaicked LandSat 7 ETM+ Satellite Imagery of the Marshall...

    • datasets.ai
    • search.dataone.org
    • +2more
    0
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2020). GIS Map of Mosaicked LandSat 7 ETM+ Satellite Imagery of the Marshall Islands, Micronesia Federated States, and the Republic of Palau from January 1, 1999 to December 31, 2003 (NCEI Accession 0067475) [Dataset]. https://datasets.ai/datasets/gis-map-of-mosaicked-landsat-7-etm-satellite-imagery-of-the-marshall-islands-micronesia-federat
    Explore at:
    0Available download formats
    Dataset updated
    Dec 3, 2020
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    National Oceanic and Atmospheric Administration, Department of Commerce
    Area covered
    Palau, Marshall Islands, Micronesia
    Description

    These maps show for the first time an accurate georeferenced mosaic of the Marshall Islands, the Federated States of Micronesia, the Republic of Palau and their respective corresponding shallow water areas. Shallow-water (generally, less than 30 meters) bank and land areas in these areas were identified through analysis of Landsat 7 ETM+ satellite imagery. The mosaics are laid over ETOPO2 Bathymetric Data to provide an enhanced understanding of how the Atolls and Islands fit together. In addition selected islands and atolls are shown next to the mosaic. This project was conducted in support of the U.S. Coral Reef Task Force.

    Data in this accession are best used with appropriate Geographic Information System (GIS) software.

  18. c

    Barn Owl Predicted Habitat - CWHR B262 [ds2178]

    • gis.data.ca.gov
    • data.cnra.ca.gov
    • +3more
    Updated Sep 14, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2016). Barn Owl Predicted Habitat - CWHR B262 [ds2178] [Dataset]. https://gis.data.ca.gov/maps/1b567c95f3b34ff79dc15d1a1fdf290e
    Explore at:
    Dataset updated
    Sep 14, 2016
    Dataset authored and provided by
    California Department of Fish and Wildlife
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  19. g

    Geospatial data for the Vegetation Mapping Inventory Project of Great Sand...

    • gimi9.com
    Updated Oct 12, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Geospatial data for the Vegetation Mapping Inventory Project of Great Sand Dunes National Park | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_geospatial-data-for-the-vegetation-mapping-inventory-project-of-great-sand-dunes-national-/
    Explore at:
    Dataset updated
    Oct 12, 2014
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. The digital vegetation map was produced using a combination of machine processing and visual interpretation. We used two primary image sources. These included 2006 1:12,000-scale infrared aerial photography for the areas west of the Sangre de Cristo Mountain range that was subsequently processed by the USFWS and 2006 National Agricultural Imagery Program (NAIP) imagery, and ground-truthing to interpret the complex patterns of vegetation and landuse at GRSA. Other referenced imagery included 2006 and 2007 Quickbird imagery which covered portions of the project area. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcInfo© software. Draft maps created from the vegetation classification were field-tested and revised before independent ecologists completed an assessment of the map‘s accuracy during 2008. During the summer of 2008 we sampled 1,537 accuracy assessment points to establish a final overall accuracy of 73.7%. This metric is subject to considerable interpretation and is discussed in detail in the results section.

  20. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    • resodate.org
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Market Report Analytics (2025). Geographical Mapping Software Report [Dataset]. https://www.marketreportanalytics.com/reports/geographical-mapping-software-54872

Geographical Mapping Software Report

Explore at:
ppt, doc, pdfAvailable download formats
Dataset updated
Apr 3, 2025
Dataset authored and provided by
Market Report Analytics
License

https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

Discover the booming geographical mapping software market! This in-depth analysis reveals key trends, growth drivers, regional insights, and leading companies shaping the future of geospatial technology. Learn about market size, CAGR, and top applications in urban planning, geological exploration, and more.

Search
Clear search
Close search
Google apps
Main menu