The Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gsam_geology.gdb), a 10.1 ArcMap (.mxd) map document (gsam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (grsa_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (grsa_geology_gis_readme.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Great Sand Dunes National Park and Preserve.
The Digital Geologic-GIS Map of parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (gsam_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (gsam_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grsa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grsa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gsam_geology_metadata_faq.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a raster-based suitability map of landfill sites produced after the February 6, 2023, Türkiye earthquakes centred on Kahramanmaraş - Pazarcık and Kahramanmaraş - Elbistan. In this study, a site selection model was developed using open-source Geographic Information Systems (GIS) software and the Best-Worst Method (BWM), one of the Multi-Criteria Decision-Making Methods, to determine the most suitable landfill areas immediately after the earthquake.The suitability map of the landfill sites can be accessed through the Serverless Cloud-GIS based Disaster Management Portal at https://web.itu.edu.tr/metemu/nominal/deprem.htmlThe pairwise comparison matrix, weight calculation, and sensitivity analysis are also provided in the MS Excel file.
Spreadsheets and graphs are powerful tools that make data come alive and tell a story. Now, use maps to see the story from another perspective. ArcGIS Maps for Office enables Microsoft Excel and PowerPoint users worldwide to ask location-related questions of data, get powerful insights, and make the best decisions. You can:Map your spreadsheet data – whether you want to see customer locations, ZIP code aggregations, custom sales territories and more – you can see it all.Add geographic context to your spreadsheet data and communicate these insights via interactive maps in PowerPoint.Gain insight into demographic, spending, behavior, and landscape information, among many more.Use the authoritative content on the ArcGIS platform to supplement your location data and add context to the locations in your spreadsheet.Securely share your maps with colleagues and stakeholders.Bring the power of the ArcGIS platform into your spreadsheets and presentations. To use ArcGIS Maps for Office you need an ArcGIS Online paid or trial subscription or a Portal for ArcGIS Named User License and Microsoft Office 2010, 2013, or 2016. Visit the online documentation for information on how to use this app.
The Digital Geomorphic-GIS Map of the Great Swash to Quork Hammock Area (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (gsqh_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (gsqh_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (gsqh_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gsqh_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsqh_geomorphology_metadata.txt or gsqh_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. The digital vegetation map was produced using a combination of machine processing and visual interpretation. We used two primary image sources. These included 2006 1:12,000-scale infrared aerial photography for the areas west of the Sangre de Cristo Mountain range that was subsequently processed by the USFWS and 2006 National Agricultural Imagery Program (NAIP) imagery, and ground-truthing to interpret the complex patterns of vegetation and landuse at GRSA. Other referenced imagery included 2006 and 2007 Quickbird imagery which covered portions of the project area. All of the interpreted and remotely sensed data were converted to Geographic Information System (GIS) databases using ArcInfo© software. Draft maps created from the vegetation classification were field-tested and revised before independent ecologists completed an assessment of the map‘s accuracy during 2008. During the summer of 2008 we sampled 1,537 accuracy assessment points to establish a final overall accuracy of 73.7%. This metric is subject to considerable interpretation and is discussed in detail in the results section.
This map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap includes bathymetry, marine water body names, undersea feature names, and derived depth values in meters. Land features include administrative boundaries, cities, inland waters, roads, overlaid on land cover and shaded relief imagery.
The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and DeLorme, HERE, and Esri for topographic content. The basemap was designed and developed by Esri.
The Ocean Basemap currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details, see the Community Maps Program.
Tip: Here are some famous oceanic locations as they appear in this map. Each URL below launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound
The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
These maps show for the first time an accurate georeferenced mosaic of the Marshall Islands, the Federated States of Micronesia, the Republic of Palau and their respective corresponding shallow water areas. Shallow-water (generally, less than 30 meters) bank and land areas in these areas were identified through analysis of Landsat 7 ETM+ satellite imagery. The mosaics are laid over ETOPO2 Bathymetric Data to provide an enhanced understanding of how the Atolls and Islands fit together. In addition selected islands and atolls are shown next to the mosaic. This project was conducted in support of the U.S. Coral Reef Task Force. Data in this accession are best used with appropriate Geographic Information System (GIS) software.
Attribution-NoDerivs 3.0 (CC BY-ND 3.0)https://creativecommons.org/licenses/by-nd/3.0/
License information was derived automatically
The seamless, county-wide parcel layer was digitized from official Assessor Parcel (AP) Maps which were originally maintained on mylar sheets and/or maintained as individual Computer Aided Design (CAD) drawing files (e.g., DWG). The CRA office continues to maintain the official AP Maps in CAD drawings and Information Systems Department/Geographic Information Systems (ISD/GIS) staff apply updates from these maps to the seamless parcel base in the County’s Enterprise GIS. The seamless parcel layer is updated and published to the Internet on a monthly basis.The seamless parcel layer was developed from the source data using the general methodology outlined below. The mylar sheets were scanned and saved to standard image file format (e.g., TIFF). The individual scanned maps or CAD drawing files were imported into GIS software and geo-referenced to their corresponding real-world locations using high resolution orthophotography as control. The standard approach was to rescale and rotate the scanned drawing (or CAD file) to match the general location on the orthophotograph. Then, appropriate control points were selected to register and rectify features on the scanned map (or CAD drawing file) to the orthophotography. In the process, features in the scanned map (or CAD drawing file) were transformed to real-world coordinates, and line features were created using “heads-up digitizing” and stored in new GIS feature classes. Recommended industry best practices were followed to minimize root mean square (RMS) error in the transformation of the data, and to ensure the integrity of the overall pattern of each AP map relative to neighboring pages. Where available Coordinate Geometry (COGO) & survey data, tied to global positioning systems (GPS) coordinates, were also referenced and input to improve the fit and absolute location of each page. The vector lines were then assembled into a polygon features, with each polygon being assigned a unique identifier, the Assessor Parcel Number (APN). The APN field in the parcel table was joined to the corresponding APN field in the assessor property characteristics table extracted from the MPTS database to create the final parcel layer. The result is a seamless parcel land base, each parcel polygon coded with a unique APN, assembled from approximately 6,000 individual map page of varying scale and accuracy, but ensuring the correct topology of each feature within the whole (i.e., no gaps or overlaps). The accuracy and quality of the parcels varies depending on the source. See the fields RANK and DESCRIPTION fields below for information on the fit assessment for each source page. These data should be used only for general reference and planning purposes. It is important to note that while these data were generated from authoritative public records, and checked for quality assurance, they do not provide survey-quality spatial accuracy and should NOT be used to interpret the true location of individual property boundary lines. Please contact the Sonoma County CRA and/or a licensed land surveyor before making a business decision that involves official boundary descriptions.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646
Geoform is a configurable app template for form based data editing of a Feature Service. This application allows users to enter data through a form instead of a map's pop-up while leveraging the power of the Web Map and editable Feature Services. This app geo-enables data and workflows by lowering the barrier of entry for completing simple tasks. Use CasesProvides a form-based experience for entering data through a form instead of a map pop-up. This is a good choice for users who find forms a more intuitive format than pop-ups for entering data.Useful to collect new point data from a large audience of non technical staff or members of the community.Configurable OptionsGeoform has an interactive builder used to configure the app in a step-by-step process. Use Geoform to collect new point data and configure it using the following options:Choose a web map and the editable layer(s) to be used for collection.Provide a title, logo image, and form instructions/details.Control and choose what attribute fields will be present in the form. Customize how they appear in the form, the order they appear in, and add hint text.Select from over 15 different layout themes.Choose the display field that will be used for sorting when viewing submitted entries.Enable offline support, social media sharing, default map extent, locate on load, and a basemap toggle button.Choose which locate methods are available in the form, including: current location, search, latitude and longitude, USNG coordinates, MGRS coordinates, and UTM coordinates.Supported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Get Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.
Links to recordings of the Integrated Services Program and 9-1-1 & Geospatial Services Bureau webinar series, including NG9-1-1 GIS topics such as: data preparation; data provisioning and maintenance; boundary best practices; and extract, transform, and load (ETL). Offerings include:Topic: Virginia Next Generation 9-1-1 Dashboard and Resources Update Description: Virginia recently updated the NG9-1-1 Dashboard with some new tabs and information sources and continues to develop new resources to assist the GIS data work. This webinar provides an overview of changes, a demonstration of new functionality, and a guide to finding and using new resources that will benefit Virginia public safety and GIS personnel with roles in their NG9-1-1 projects. Wednesday 16 June 2021. Recording available at: https://vimeo.com/566133775Topic: Emergency Service Boundary GIS Data Layers and Functions in your NG9-1-1 PSAP Description: Law, Fire, and Emergency Medical Service (EMS) Emergency Service Boundary (ESB) polygons are required elements of the NENA NG9-1-1 GIS data model stack that indicate which agency is responsible for primary response. While this requirement must be met in your Virginia NG9-1-1 deployment with AT&T and Intrado, there are quite a few ways you could choose to implement these polygons. PSAPs and their GIS support must work together to understand how this information will come into a NG9-1-1 i3 PSAP and how it will replace traditional ESN information in order to make good choices while implementing these layers. This webinar discusses:the function of ESNs in your legacy 9-1-1 environment, the role of ESBs in NG9-1-1, and how ESB information appears in your NG9-1-1 PSAP. Wednesday, 22 July 2020. Recording available at: https://vimeo.com/441073056#t=360sTopic: "The GIS Folks Handle That": What PSAP Professionals Need to Know about the GIS Project Phase of Next Generation 9-1-1 DeploymentDescription: Next Generation 9-1-1 (NG9-1-1) brings together the worlds of emergency communication and spatial data and mapping. While it may be tempting for PSAPs to outsource cares and concerns about road centerlines and GIS data provisioning to 'the GIS folks', GIS staff are crucial to the future of emergency call routing and location validation. Data required by NG9-1-1 usually builds on data that GIS staff already know and use for other purposes, so the transition requires them to learn more about PSAP operations and uses of core data. The goal of this webinar is to help the PSAP and GIS worlds come together by explaining the role of the GIS Project in the Virginia NG9-1-1 Deployment Steps, exploring how GIS professionals view NG9-1-1 deployment as a project, and fostering a mutual understanding of how GIS will drive NG9-1-1. 29 January 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225474Topic: Getting Your GIS Data from Here to There: Processes and Best Practices for Extract, Transform and Load (ETL) Description: During the fall of 2019, VITA-ISP staff delivered workshops on "Tools and Techniques for Managing the Growing Role of GIS in Enterprise Software." This session presents information from the workshops related to the process of extracting, transforming, and loading data (ETL), best practices for ETL, and methods for data schema comparison and field mapping as a webinar. These techniques and skills assist GIS staff with their growing role in Next Generation 9-1-1 but also apply to many other projects involving the integration and maintenance of GIS data. 19 February 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225007Topic: NG9-1-1 GIS Data Provisioning and MaintenanceDescription: VITA ISP pleased to announce an upcoming webinar about the NG9-1-1 GIS Data Provisioning and Maintenance document provided by Judy Doldorf, GISP with the Fairfax County Department of Information Technology and RAC member. This document was developed by members of the NG9-1-1 GIS workgroup within the VITA Regional Advisory Council (RAC) and is intended to provide guidance to local GIS and PSAP authorities on the GIS datasets and associated GIS to MSAG/ALI validation and synchronization required for NG9-1-1 services. The document also provides guidance on geospatial call routing readiness and the short- and long-term GIS data maintenance workflow procedures. In addition, some perspective and insight from the Fairfax County experience in GIS data preparation for the AT&T and West solution will be discussed in this webinar. 31 July 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224774Topic: NG9-1-1 Deployment DashboardDescription: I invite you to join us for a webinar that will provide an overview of our NG9-1-1 Deployment Dashboard and information about other online ISP resources. The ISP website has been long criticized for being difficult to use and find information. The addition of the Dashboard and other changes to the website are our attempt to address some of these concerns and provide an easier way to find information especially as we undertake NG9-1-1 deployment. The Dashboard includes a status map of all Virginia PSAPs as it relates to the deployment of NG9-1-1, including the total amount of funding requested by the localities and awards approved by the 9-1-1 Services Board. During this webinar, Lyle Hornbaker, Regional Coordinator for Region 5, will navigate through the dashboard and provide tips on how to more effectively utilize the ISP website. 12 June 2019. Recording not currently available. Please see the Virginia Next Generation 9-1-1 Dashboard and Resources Update webinar recording from 16 June 2021. Topic: PSAP Boundary Development Tools and Process RecommendationDescription: This webinar will be presented by Geospatial Program Manager Matt Gerike and VGIN Coordinator Joe Sewash. With the release of the PSAP boundary development tools and PSAP boundary segment compilation guidelines on the VGIN Clearinghouse in March, this webinar demonstrates the development tools, explains the process model, and discusses methods, tools, and resources available for you as you work to complete PSAP boundary segments with your neighbors. 15 May 2019. Recording available at: https://www.youtube.com/watch?v=kI-1DkUQF9Q&feature=youtu.beTopic: NG9-1-1 Data Preparation - Utilizing VITA's GIS Data Report Card ToolDescription: This webinar, presented by VGIN Coordinator Joe Sewash, Geospatial Program Manager Matt Gerike, and Geospatial Analyst Kenny Brevard will provide an overview of the first version of the tools that were released on March 25, 2019. These tools will allow localities to validate their GIS data against the report card rules, the MSAG and ALI checks used in previous report cards, and the analysis listed in the NG9-1-1 migration proposal document. We will also discuss the purpose of the tools, input requirements, initial configuration, how to run them, and how to make sense of your results. 10 April 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224495Topic: NG9-1-1 PSAP Boundary Best Practice WebinarDescription: During the months of November and December, VITA ISP staff hosted regional training sessions about best practices for PSAP boundaries as they relate to NG9-1-1. These sessions were well attended and very interactive, therefore we feel the need to do a recap and allow those that may have missed the training to attend a makeup session. 30 January 2019. Recording not currently available. Please see the PSAP Boundary Development Tools and Process Recommendation webinar recording from 15 May 2019.Topic: NG9-1-1 GIS Overview for ContractorsDescription: The Commonwealth of Virginia has started its migration to next generation 9-1-1 (NG9-1-1). This migration means that there will be a much greater reliance on geographic information (GIS) to locate and route 9-1-1 calls. VITA ISP has conducted an assessment of current local GIS data and provided each locality with a report. Some of the data from this report has also been included in the localities migration proposal, which identifies what data issues need to be resolved before the locality can migrate to NG9-1-1. Several localities in Virginia utilize a contractor to maintain their GIS data. This webinar is intended for those contractors to review the data in the report, what is included in the migration proposal and how they may be called on to assist the localities they serve. It will still ultimately be up to each locality to determine whether they engage a contractor for assistance, but it is important for the contractor community to understand what is happening and have an opportunity to ask questions about the intent and goals. This webinar will provide such an opportunity. 22 August 2018. Recording not currently available. Please contact us at NG911GIS@vdem.virginia.gov if you are interested in this content.
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
As part of the Maine Beach Mapping Program (MBMAP), MGS surveys annual alongshore shoreline positions (see Beach_Mapping_Shorelines). Using these shoreline positions and guidance from the USGS Digital Shoreline Analysis System (DSAS). DSAS is referenced as Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, Ayhan, 2009, Digital Shoreline Analysis System (DSAS) version 4.0— An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278. For more information on DSAS and the methodology DSAS employs, please see: https://woodshole.er.usgs.gov/project-pages/DSAS/. The supporting DSAS User Guide which describes how DSAS works and how statistics are calculated is available here: http://www.maine.gov/dacf/mgs/hazards/beach_mapping/DSAS_manual.pdf. MGS wrote a database procedure following protocols outlined in DSAS that allows for the calculation of different shoreline change rates and supporting statistics. This was done so that MGS no longer needed to depend on USGS updates to the DSAS software to keep current with ArcGIS software updates. The script casts shoreline-perpendicular transects at a set spacing (in this case, 10-m intervals along the shoreline), from a preset baseline (located landward of the monitored shorelines), and calculates a range of shoreline change statistics, including: Process Time: The time when the statistics were calculated. TransectID: The ID of the transect (including the group or line section ID; for example, 1-1, is line 1, transect 1) SCE: Shoreline Change Envelope. The distance, in meters, between the shoreline farthest from and closests to the baseline at each transect. NSM: Net Shoreline Movement. The distance, in meters, between the oldest and youngest shorelines for each tranect. EPR: End Point Rate. A shoreline change rate, in meters/year, calculated by dividing the NSM by the time elapsed between the oldest and youngest shorelines at each transect. LRR: Linear Regression Rate. A shoreline change rate, in meters/year, calculated by fitting a least-squares regression line to all of the shoreline points for a particular transect. The distance from the baseline, in meters, is plotted against the shoreline date, and slope of the line that provides the best fit is the LRR. LR2: The R-squared statistic, or coefficient of determination. The percentage of variance in the data that is explained by a regression, or in this case, the LRR value. It is a dimensionless index that ranges from 1.0 (a perfect fit, with the best fit line explaining all variation) to 0.0 (a bad fit, with the best fit line explaining little to no variation) and measures how successfully the best fit line (LRR) accounts for variation in the data. LCI95: Standard error of the slope at the 95% confidence interval. Calculated by muliplying the standard error, or standard deviation, of the slope by the two-tailed test statistic at the user-specified confidence percentage. For example if a reported LRR is 1.34 m/yr and a calculated LCI95 is 0.50, the band of confidence around the LRR is +/- 0.50. In other words, you can be 95% confidence that the true rate of change is between 0.84 and 1.84 m/yr. LRR_ft: The Linear Regression Rate, converted to feet/year. LCI95_ft: The LCI95, converted to feet. EPR_ft: The End Point Rate converted to feet.
The Unpublished Digital Geologic-GIS Map of Parts of Great Sand Dunes National Park and Preserve (Sangre de Cristo Mountains and part of the Dunes), Colorado is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (gsam_geology.gdb), a 10.1 ArcMap (.mxd) map document (gsam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (grsa_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (grsa_geology_gis_readme.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsam_geology_metadata.txt or gsam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Great Sand Dunes National Park and Preserve.