Facebook
TwitterThis is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.
Facebook
TwitterThe Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This "Best of" Color image service (web mercator projection) allows you to stream Vermont's best available imagery into your GIS or web mapping application. HOW TO USE: The service is available by plugging in the following REST endpoint into your browser, web mapping application, or GIS software.https://maps.vcgi.vermont.gov/arcgis/rest/services/EGC_services/IMG_VCGI_CLR_WM_CACHE/ImageServer NOTE: Clicking the "Download" button to the right will not actually give you the data OR access to the service. Ignore the "Download" button and use the URL above instead. HELP: Refer to the following video describing how you can use VCGI's services in ArcGIS or QGIS.
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Geographic Information System (GIS) software market is experiencing a significant transformation, underpinned by rapid technological advancements and a growing demand for location-based analytics across diverse industries. As of now, the global GIS software market is valued at approximately $4 billion, reflectin
Facebook
TwitterThe primary intent of this workshop is to provide practical training in using Statistics Canada geography files with the leading industry standard software: Environmental Systems Research Institute, Inc.(ESRI) ArcGIS 9x. Participants will be introduced to the key features of ArcGIS 9x, as well as to geographic concepts and principles essential to understanding and working with geographic information systems (GIS) software. The workshop will review a range of geography and attribute files available from Statistics Canada, as well as some best practices for accessing this information. A brief overview of complementary data sets available from federal and provincial agencies will be provided. There will also be an opportunity to complete a practical exercise using ArcGIS9x. (Note: Data associated with this presentation is available on the DLI FTP site under folder 1873-221.)
Facebook
TwitterThe Digital Geologic-GIS Map of Great Basin National Park and Vicinity, Nevada is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (grba_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (grba_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grba_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grba_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (grba_geology_metadata_faq.pdf). Please read the grba_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Stanford University and the Stanford Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (grba_geology_metadata.txt or grba_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterArcGIS Location Tracking Privacy Best Practices (Esri Whitepaper).This document contains relevant information that helps guide IT managers, GIS administrators, andprivacy and security team members in deploying cloud and enterprise GIS in a manner that helps complywith privacy regulations, such as GDPR, for location tracking services._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
Twitterhttps://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
According to our latest research, the Global High Injury Network GIS Tooling market size was valued at $1.3 billion in 2024 and is projected to reach $4.8 billion by 2033, expanding at a robust CAGR of 15.2% during the forecast period of 2024–2033. The major factor propelling this market’s global growth is the increasing prioritization of road safety and urban mobility, which has led to a surge in demand for advanced GIS (Geographic Information System) tools capable of identifying high injury networks. These tools are instrumental for government agencies, urban planners, and transportation authorities aiming to reduce traffic fatalities and serious injuries through data-driven interventions and targeted infrastructure investments.
North America continues to dominate the High Injury Network GIS Tooling market, holding the largest market share of approximately 38% in 2024. This region’s leadership is underpinned by its mature transportation infrastructure, widespread adoption of advanced GIS technologies, and strong policy mandates focused on Vision Zero and similar traffic safety initiatives. The United States, in particular, has been at the forefront, investing heavily in smart city projects and leveraging GIS tooling for traffic safety analysis and urban planning. The presence of leading GIS software vendors and robust funding for public safety programs further solidifies North America's market position. Additionally, cross-sector collaborations between government agencies and technology providers have accelerated the integration of GIS solutions, ensuring that North America remains the benchmark for innovation and best practices in this sector.
Asia Pacific is emerging as the fastest-growing region in the High Injury Network GIS Tooling market, with a projected CAGR of 18.6% from 2024 to 2033. Rapid urbanization, escalating concerns about road safety, and increasing investments in smart transportation infrastructure are driving this growth. Countries such as China, India, and Japan are making significant strides in deploying GIS-based traffic safety analysis tools, supported by government initiatives to modernize urban mobility systems. The region’s large population base, coupled with rising vehicle ownership, has created an urgent need for effective injury prevention strategies. Furthermore, the adoption of cloud-based GIS tools and the proliferation of mobile applications for real-time data collection are enhancing the scalability and accessibility of these solutions across diverse urban and semi-urban landscapes.
Emerging economies in Latin America, the Middle East, and Africa are gradually embracing High Injury Network GIS Tooling solutions, albeit at a slower pace due to infrastructure constraints and budgetary limitations. In these regions, the adoption of GIS tooling is often driven by international funding, pilot projects, and collaborations with global organizations focused on road safety. However, challenges such as limited technical expertise, data availability issues, and fragmented regulatory frameworks can hinder widespread implementation. Despite these hurdles, localized demand for public health improvements and urban safety is prompting governments and municipalities to explore GIS-driven approaches, particularly in major cities facing rapid population growth and increased traffic congestion.
| Attributes | Details |
| Report Title | High Injury Network GIS Tooling Market Research Report 2033 |
| By Component | Software, Hardware, Services |
| By Application | Traffic Safety Analysis, Urban Planning, Law Enforcement, Public Health, Transportation Management, Others |
| By Deployment Mode | On-Premises, Cloud |
| By End-User | Government Agencies, Transportation Autho |
Facebook
TwitterThe Digital Geologic-GIS Map of Great Sand Dunes National Park, Colorado is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (grsa_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (grsa_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (grsa_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (grsa_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (grsa_geology_metadata_faq.pdf). Please read the grsa_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (grsa_geology_metadata.txt or grsa_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:35,000 and United States National Map Accuracy Standards features are within (horizontally) 17.8 meters or 58.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterEssential configurations for highly scalable ArcGIS Online web apps (ArcGIS Blog).Learn best practices for configuring web applications that receive a high amount of web traffic, use a quick checklist focus on critical settings._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.
Facebook
TwitterA
New Zealand Communications Company has received numerous
complaints about cell phone service and reception in your chosen
study area. Cell reception is poor in a number of areas and so the
company has contracted you to locate 3 possible sites for a new cell
phone tower to improve cell reception and make a recommendation on
the best site. It is your job to use GIS software to prepare a report and presentations that:shows and explains 3 possible sites for this new cell towerrecommends the best siteAchievement Standard 91247
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Between 2011 and 2018, the NASA Dawn spacecraft visited asteroid (4) Vesta and dwarf planet (1) Ceres to investigate the surfaces of both protoplanets through optical and hyperspectral imaging and their composition through gamma-ray and neutron spectroscopy from orbit.
For both Vesta and Ceres, a geologic mapping investigation was realized based on optical and hyperspectral data as well as a photogrammetrically derived digital terrain model. For the global mapping investigation, mappers employed Geographic Information System (GIS) software to map 15 quadrangles. The results were published as individual map sheets alongside research papers discussing the geologic evolution. The style of collaborative mapping to produce a consistent global view represented by individual quadrangle maps is comparably new despite abundantly available mapping experiences. Ongoing data acquisition during mapping created considerable challenges for the coordination and homogenization of mapping results.
To handle this issue simultaniously to the active mission phase as best as possible a GIS-based environment was needed in order to conduct one homogenous dataset (w.r.t. geometrical and visual character) that represents one geologically-consistent map at the end. Therefore, the mapping team was supported by an predefined mapping template which was generated in the proprietary ArcGIS environment. The template contains different layers (called feature classes) for the different object/geomoetry types and contains predefined attribute values as well as cartographic symbols. The cartographic symbols follow international standards as far as possible. The colours for the geological units refering to established colour values used in geologic maps, e.g., standardized planetary maps generated by USGS, but considering individual needs and requests within the mapping team, too.
The data product pubished here based on the mentioned GIS-based template and represents the merged global GIS-dataset of the 15 individually conducted geological maps of Ceres within the Dawn Mission. The detailed descriptions of all those scientific interpretions are published in the papers listed within the reference section. Based on team-internal decisions the dataset is provided within the properitary format of ESRIs ArcGIS environment. However, in order to use the data product also outside this software environment, single shapefiles with additional information about the symbology are also included. All available data are available within the compressed folder and the readme-file gives some informative remarks for the useage of the data
Additional remark: The data set provided here does not represent a holistic (in term of topological and scientifical) unification of the 15 individual mapping data as primarily geometric and content-related inconsistencies at quadrangle boundaries prohibited a unified compilation. On the one side, this is due to the fact that the the aim of the mapping project was not to produce a uniform global map, but rather to gain a first impression of the geology of Ceres and publish associated scientific papers. On the other side, that the geological mapping project ran parallel to the regular mission phase, and a finalizing review process for creating a global geological dataset wasn´t scheduled in the mission planning. This deficiency cannot be remedied simply by merging topological missmatches or changing the visualisation. Rather it will require ongoing and detailed scientific discussion of the interpretation results, which could be solved within an updating version of the global map.
Facebook
TwitterThese maps show for the first time an accurate georeferenced mosaic of the Marshall Islands, the Federated States of Micronesia, the Republic of Palau and their respective corresponding shallow water areas. Shallow-water (generally, less than 30 meters) bank and land areas in these areas were identified through analysis of Landsat 7 ETM+ satellite imagery. The mosaics are laid over ETOPO2 Bathymetric Data to provide an enhanced understanding of how the Atolls and Islands fit together. In addition selected islands and atolls are shown next to the mosaic. This project was conducted in support of the U.S. Coral Reef Task Force.
Data in this accession are best used with appropriate Geographic Information System (GIS) software.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This Dynamic Image Service provides access to a 5 Foot Digital Elevation Model (DEM) with a Shaded Relief function applied for Kentucky. The service is in Kentucky Single Coordinate System (3089) and is best used in desktop GIS software.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global network mapping software market size was valued at USD 2,325.4 million in 2025 and is projected to grow at a CAGR of 12.3% during the forecast period (2025-2033). The rapid growth of cloud-based, on-premises, and hybrid IT environments, coupled with the increasing adoption of network management best practices, are some of the key factors driving market growth. Furthermore, the need to enhance network visibility and control, improve performance, and simplify network troubleshooting is also contributing to the growing demand for network mapping software. Cloud-based and on-premises solutions held a significant market share in 2025. However, the cloud-based segment is expected to witness faster growth during the forecast period. The growing adoption of cloud-based services, the need for remote network management, and the cost-effectiveness of cloud-based solutions are driving the growth of this segment. In terms of application, the small and medium enterprises (SMEs) segment dominated the market in 2025, and it is expected to maintain its dominance throughout the forecast period. The increasing number of SMEs, the need for cost-effective network management solutions, and the growing awareness of network security are driving the growth of this segment. Network mapping software is a tool that helps businesses visualize and manage their networks. It can be used to create diagrams of the network, identify potential problems, and track down performance issues. The software can also be used to automate tasks such as device discovery and configuration.
Facebook
TwitterNLEAP GIS 5.0 can help users identify hot spots across the landscape and identify management practices that can increase nitrogen use efficiency. A Nitrogen Trading Tool (NTT) analysis can be conducted to determine the potential benefits of implementing best management practices and the quantity of nitrogen savings that could potentially be traded in future air or water quality markets. Resources in this dataset:Resource Title: NLEAP GIS 5.0. File Name: Web Page, url: https://www.ars.usda.gov/research/software/download/?softwareid=428&modecode=30-12-30-15 download page
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
Facebook
TwitterThe Digital Geomorphic-GIS Map of the Great Swash to Quork Hammock Area (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (gsqh_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (gsqh_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (gsqh_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gsqh_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gsqh_geomorphology_metadata.txt or gsqh_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
CShapes is a new dataset that provides historical maps of state boundaries and capitals in the post-World War II period. The dataset is coded according to both the Correlates of War and the Gleditsch and Ward (1999) state lists, and is therefore compatible with a great number of existing databases in the discipline. Provided in a geographic data format, CShapes can be used directly with standard GIS software, allowing a wide range of spatial computations. In addition, we supply a CShapes package for the R statistical toolkit. This package enables researchers without GIS skills to perform various useful operations on the GIS maps.
Homepage: https://icr.ethz.ch/data/cshapes/
Facebook
TwitterThis is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.