According to a ranking by Statista and Newsweek, the best hospital in the United States is the Mayo Clinic in Rochester, Minnesota. Moreover, the Mayo Clinic was also ranked as the best hospital in the world, among over 50,000 hospitals in 30 countries. Cleveland Clinic in Ohio and the Johns Hopkins Hospital in Maryland were ranked as second and third best respectively in the U.S., while they were second and forth best respectively in the World.
According to a ranking of the best hospitals in the U.S., the best hospital for adult cancer is the University of Texas MD Anderson Cancer Center, which had a score of 100 out of 100, as of 2024. This statistic shows the top 10 hospitals for adult cancer in the United States based on the score given by U.S. News and World Report's annual hospital ranking.
According to a ranking by Statista and Newsweek, the best hospital in Sweden is the Karolinska Universitetssjukhuset in Stockholm. Moreover, Karolinska Universitetssjukhuset was also ranked as the seventh-best hospital in the world, among over 50,000 hospitals in 30 countries. Sahlgrenska Universitetssjukhuset in Göteborg and Akademiska Sjukhuset in Uppsala were ranked as second and third best respectively in the Sweden, while they were 74th and 75th best respectively in the World.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
*Standardized units.Characteristics of the top 50 Cancer Hospitals, as ranked by the US News and World Report.
According to a ranking of the best hospitals in the U.S., the best hospital for adult cardiology, heart, and vascular surgery is the Cleveland Clinic in Ohio, which had a score of 100 out of 100, as of 2024. This statistic shows the top 10 hospitals for adult cardiology, heart, and vascular surgery in the United States based on the score given by U.S. News and World Report's annual hospital ranking.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 36 countries was 4.44 hospital beds. The highest value was in South Korea: 12.65 hospital beds and the lowest value was in Mexico: 0.99 hospital beds. The indicator is available from 1960 to 2021. Below is a chart for all countries where data are available.
According to a ranking by Statista and Newsweek, the best hospital in Denmark is the Rigshospitalet - København in Copenhagen. Moreover, the Rigshospitalet - København was also ranked as the 21st best hospital in the world, among over 50,000 hospitals in 30 countries. Aarhus Universitetshospital in Aarhus and Odense Universitetshospital in Odense were ranked as second and third best respectively in the Denmark, while they were 23rd and 85th best respectively in the World.
According to a ranking by Statista and Newsweek, the best hospital in Norway is Oslo Universitetssykehus in Oslo. Moreover, Oslo Universitetssykehus was also ranked as the 29th best hospital in the world, among over 50,000 hospitals in 30 countries. St. Olavs Hospital in Trondheim and Haukeland Universitetssykehus in Bergen were ranked as second and third best respectively in the Norway, while they were 138th and 151st best respectively in the World.
According to a ranking by Statista and Newsweek, the best hospital in Finland is Helsinki University Hospital in Helsinki. Moreover, Helsinki University Hospital was also ranked as the 50th best hospital in the world, among over 50,000 hospitals in 30 countries. Tampere University Hospital in Tampere and Turku University Hospital in Turku were ranked as second and third best respectively in the Finland, while they were 126th and 121st best respectively in the World.
Success.ai’s Healthcare Professionals Data for Healthcare & Hospital Executives in Europe provides a reliable and comprehensive dataset tailored for businesses aiming to connect with decision-makers in the European healthcare and hospital sectors. Covering healthcare executives, hospital administrators, and medical directors, this dataset offers verified contact details, professional insights, and leadership profiles.
With access to over 700 million verified global profiles and data from 70 million businesses, Success.ai ensures your outreach, market research, and partnership strategies are powered by accurate, continuously updated, and GDPR-compliant data. Backed by our Best Price Guarantee, this solution is indispensable for navigating and thriving in Europe’s healthcare industry.
Why Choose Success.ai’s Healthcare Professionals Data?
Verified Contact Data for Targeted Engagement
Comprehensive Coverage of European Healthcare Professionals
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive Professional Profiles
Advanced Filters for Precision Campaigns
Healthcare Industry Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing and Outreach to Healthcare Executives
Partnership Development and Collaboration
Market Research and Competitive Analysis
Recruitment and Workforce Solutions
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
...
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
South Korea Number of Hospital was up 3.5% in 2019, compared to the previous year.
By Amber Thomas [source]
This dataset contains machine-readable hospital pricing information for Children's Hospitals and Clinics of Minnesota. It includes three separate files:
- 2022-top-25-hospital-based-clinics-list.csv: This file provides the top 25 primary care procedure prices, including procedure codes, fees, and insurance coverage details.
- 2022-standard-list-of-charges-hospital-op.csv: This file includes machine-readable hospital pricing information, including procedure codes, fees, and insurance coverage details.
- 2022-msdrg.csv: This file also contains machine-readable hospital pricing information, including procedure codes, fees, and insurance coverage details.
The data was collected programmatically using a custom script written in Node.js and Microsoft Playwright. These files were then mirrored on the data.world platform using the Import from URL option.
If you find any errors in the dataset or have any questions or concerns, please leave a note in the Discussion tab of this dataset or contact supportdata.world for assistance
Dataset Overview:
- The dataset contains three files: a) 2022-top-25-hospital-based-clinics-list.csv: This file includes the top 25 primary care procedure prices for Children's Hospitals and Clinics of Minnesota, including procedure codes, fees, and insurance coverages. b) 2022-standard-list-of-charges-hospital-op.csv: This file includes machine-readable hospital pricing information for Children's Hospitals and Clinics of Minnesota, including procedure codes, fees, and insurance coverages. c) 2022-msdrg.csv: This file includes machine-readable hospital pricing information for Children's Hospitals and Clinics of Minnesota, including MSDRG (Medicare Severity Diagnosis Related Groups) codes, fees, and insurance coverages.
Data Collection:
- The data was collected programmatically using a custom script written in Node.js with the assistance of Microsoft Playwright.
- These datasets were programmatically mirrored on the data.world platform using the Import from URL option.
Usage Guidelines:
Explore Procedure Prices: You can analyze the top 25 primary care procedure prices by referring to the '2022-top-25-hospital-based-clinics-list.csv' file. It provides information on procedure codes (identifiers), associated fees (costs), and insurance coverage details.
Analyze Hospital Price Information: The '2022-standard-list-of-charges-hospital-op.csv' contains comprehensive machine-readable hospital pricing information. You can examine various procedures by their respective codes along with associated fees as well as corresponding insurance coverage details.
Understand MSDRG Codes & Fees: The '2022-msdrg.csv' file includes machine-readable hospital pricing information based on MSDRG (Medicare Severity Diagnosis Related Groups) codes. You can explore the relationship between diagnosis groups and associated fees, along with insurance coverage details.
Reporting Errors:
- If you identify any errors or discrepancies in the dataset, please leave a note in the Discussion tab of this dataset to notify others who may be interested.
- Alternatively, you can reach out to the data.world team at supportdata.world for further assistance.
- Comparative Analysis: Researchers and healthcare professionals can use this dataset to compare the pricing of primary care procedures at Children's Hospitals and Clinics of Minnesota with other hospitals. This can help identify any variations or discrepancies in pricing, enabling better cost management and transparency.
- Insurance Coverage Analysis: The insurance coverage information provided in this dataset can be used to analyze which procedures are covered by different insurance providers. This analysis can help patients understand their out-of-pocket expenses for specific procedures and choose the best insurance plan accordingly.
- Cost Estimation: Patients can utilize this dataset to estimate the cost of primary care procedures at Children's Hospitals and Clinics of Minnesota before seeking medical treatment. By comparing procedure fees across different hospitals, patients can make informed decisions about where to receive their healthcare services based on affordability and quality
If you use this dataset in your research, please credit the original authors. Data Source
**Unknown License - Please chec...
By US Open Data Portal, data.gov [source]
This dataset provides an inside look at the performance of the Veterans Health Administration (VHA) hospitals on timely and effective care measures. It contains detailed information such as hospital names, addresses, census-designated cities and locations, states, ZIP codes county names, phone numbers and associated conditions. Additionally, each entry includes a score, sample size and any notes or footnotes to give further context. This data is collected through either Quality Improvement Organizations for external peer review programs as well as direct electronic medical records. By understanding these performance scores of VHA hospitals on timely care measures we can gain valuable insights into how VA healthcare services are delivering values throughout the country!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the performance of Veterans Health Administration hospitals on timely and effective care measures. In this dataset, you can find the hospital name, address, city, state, ZIP code, county name, phone number associated with each hospital as well as data related to the timely and effective care measure such as conditions being measured and their associated scores.
To use this dataset effectively, we recommend first focusing on identifying an area of interest for analysis. For example: what condition is most impacting wait times for patients? Once that has been identified you can narrow down which fields would best fit your needs - for example if you are studying wait times then “Score” may be more valuable to filter than Footnote. Additionally consider using aggregation functions over certain fields (like average score over time) in order to get a better understanding of overall performance by factor--for instance Location.
Ultimately this dataset provides a snapshot into how Veteran's Health Administration hospitals are performing on timely and effective care measures so any research should focus around that aspect of healthcare delivery
- Analyzing and predicting hospital performance on a regional level to improve the quality of healthcare for veterans across the country.
- Using this dataset to identify trends and develop strategies for hospitals that consistently score low on timely and effective care measures, with the goal of improving patient outcomes.
- Comparison analysis between different VHA hospitals to discover patterns and best practices in providing effective care so they can be shared with other hospitals in the system
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: csv-1.csv | Column name | Description | |:-----------------------|:-------------------------------------------------------------| | Hospital Name | Name of the VHA hospital. (String) | | Address | Street address of the VHA hospital. (String) | | City | City where the VHA hospital is located. (String) | | State | State where the VHA hospital is located. (String) | | ZIP Code | ZIP code of the VHA hospital. (Integer) | | County Name | County where the VHA hospital is located. (String) | | Phone Number | Phone number of the VHA hospital. (String) | | Condition | Condition being measured. (String) | | Measure Name | Measure used to measure the condition. (String) | | Score | Score achieved by the VHA h...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionIn confronting the sudden COVID-19 epidemic, China and other countries have been under great pressure to block virus transmission and reduce fatalities. Converting large-scale public venues into makeshift hospitals is a popular response. This addresses the outbreak and can maintain smooth operation of a country or region's healthcare system during a pandemic. However, large makeshift hospitals, such as the Shanghai New International Expo Center (SNIEC) makeshift hospital, which was one of the largest makeshift hospitals in the world, face two major problems: Effective and precise transfer of patients and heterogeneity of the medical care teams.MethodsTo solve these problems, this study presents the medical practices of the SNIEC makeshift hospital in Shanghai, China. The experiences include constructing two groups, developing a medical management protocol, implementing a multi-dimensional management mode to screen patients, transferring them effectively, and achieving homogeneous quality of medical care. To evaluate the medical practice performance of the SNIEC makeshift hospital, 41,941 infected patients were retrospectively reviewed from March 31 to May 23, 2022. Multivariate logistic regression method and a tree-augmented naive (TAN) Bayesian network mode were used.ResultsWe identified that the three most important variables were chronic disease, age, and type of cabin, with importance values of 0.63, 0.15, and 0.11, respectively. The constructed TAN Bayesian network model had good predictive values; the overall correct rates of the model-training dataset partition and test dataset partition were 99.19 and 99.05%, respectively, and the respective values for the area under the receiver operating characteristic curve were 0.939 and 0.957.ConclusionThe medical practice in the SNIEC makeshift hospital was implemented well, had good medical care performance, and could be copied worldwide as a practical intervention to fight the epidemic in China and other developing countries.
By Health [source]
This dataset contains detailed information about 30-day readmission and mortality rates of U.S. hospitals. It is an essential tool for stakeholders aiming to identify opportunities for improving healthcare quality and performance across the country. Providers benefit by having access to comprehensive data regarding readmission, mortality rate, score, measure start/end dates, compared average to national as well as other pertinent metrics like zip codes, phone numbers and county names. Use this data set to conduct evaluations of how hospitals are meeting industry standards from a quality and outcomes perspective in order to make more informed decisions when designing patient care strategies and policies
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides data on 30-day readmission and mortality rates of U.S. hospitals, useful in understanding the quality of healthcare being provided. This data can provide insight into the effectiveness of treatments, patient care, and staff performance at different healthcare facilities throughout the country.
In order to use this dataset effectively, it is important to understand each column and how best to interpret them. The ‘Hospital Name’ column displays the name of the facility; ‘Address’ lists a street address for the hospital; ‘City’ indicates its geographic location; ‘State’ specifies a two-letter abbreviation for that state; ‘ZIP Code’ provides each facility's 5 digit zip code address; 'County Name' specifies what county that particular hospital resides in; 'Phone number' lists a phone contact for any given facility ;'Measure Name' identifies which measure is being recorded (for instance: Elective Delivery Before 39 Weeks); 'Score' value reflects an average score based on patient feedback surveys taken over time frame listed under ' Measure Start Date.' Then there are also columns tracking both lower estimates ('Lower Estimate') as well as higher estimates ('Higher Estimate'); these create variability that can be tracked by researchers seeking further answers or formulating future studies on this topic or field.; Lastly there is one more measure oissociated with this set: ' Footnote,' which may highlight any addional important details pertinent to analysis such as numbers outlying National averages etc..
This data set can be used by hospitals, research facilities and other interested parties in providing inciteful information when making decisions about patient care standards throughout America . It can help find patterns about readmitis/mortality along county lines or answer questions about preformance fluctuations between different hospital locations over an extended amount of time. So if you are ever curious about 30 days readmitted within US Hospitals don't hesitate to dive into this insightful dataset!
- Comparing hospitals on a regional or national basis to measure the quality of care provided for readmission and mortality rates.
- Analyzing the effects of technological advancements such as telemedicine, virtual visits, and AI on readmission and mortality rates at different hospitals.
- Using measures such as Lower Estimate Higher Estimate scores to identify systematic problems in readmissions or mortality rate management at hospitals and informing public health care policy
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: Readmissions_and_Deaths_-_Hospital.csv | Column name | Description | |:-------------------------|:---------------------------------------------------------------------------------------------------| | Hospital Name ...
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global hospital real-time location systems (RTLS) market size is anticipated to grow from USD 2.5 billion in 2023 to USD 7.6 billion by 2032, reflecting a robust compound annual growth rate (CAGR) of 14.5% during the forecast period. This rapid market growth is driven by the increasing need for efficient workflow management and enhanced patient care in healthcare facilities.
One of the primary factors fueling the growth of the hospital RTLS market is the escalating demand for improved patient safety and operational efficiency. Hospitals are increasingly adopting RTLS technology to enhance patient care by reducing wait times, preventing medication errors, and ensuring timely delivery of healthcare services. With the growing prevalence of chronic diseases and increasing patient admissions, the need for efficient asset and staff management has become critical, thereby driving the adoption of RTLS in healthcare settings.
Moreover, advancements in technology and the integration of IoT (Internet of Things) in the healthcare sector have significantly contributed to the growth of the RTLS market. The introduction of advanced technologies such as RFID (Radio Frequency Identification), Wi-Fi, Bluetooth, and ultrasound has revolutionized the way hospitals manage their resources. These technologies provide real-time tracking and monitoring capabilities, enabling healthcare providers to make informed decisions quickly and efficiently.
Another notable growth factor is the increasing government initiatives and funding to improve healthcare infrastructure. Governments across various regions are investing heavily in healthcare IT solutions, including RTLS, to enhance the quality of care and ensure patient safety. For instance, initiatives to implement electronic health records (EHR) and other digital health solutions are creating a favorable environment for the adoption of RTLS in hospitals and other healthcare facilities.
From a regional perspective, North America holds a significant share of the hospital RTLS market, attributed to the well-established healthcare infrastructure and high adoption rate of advanced technologies. Europe follows closely, with countries like Germany, France, and the UK investing substantially in healthcare IT solutions. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by the increasing healthcare expenditure, growing awareness about the benefits of RTLS, and the rising number of hospitals and healthcare facilities in countries like China and India.
The hospital RTLS market is segmented by components into hardware, software, and services. The hardware segment comprises tags, sensors, and other tracking devices essential for the implementation of RTLS in healthcare settings. The software segment includes the applications and platforms that facilitate the analysis and visualization of the data collected by the hardware components. Services encompass installation, maintenance, and consulting services necessary for the effective deployment and operation of RTLS solutions.
In the hardware segment, tags and sensors play a crucial role in tracking the location of assets, patients, and staff within the hospital premises. These devices are equipped with various technologies such as RFID, Wi-Fi, Bluetooth, and ultrasound to ensure accurate real-time tracking. The demand for advanced and miniaturized tags and sensors is on the rise, driven by the need for more precise and reliable tracking solutions in healthcare facilities.
The software segment is witnessing significant growth due to the increasing adoption of analytics and data visualization tools in healthcare. These software solutions enable healthcare providers to monitor and manage hospital operations effectively, leading to improved patient care and operational efficiency. The integration of RTLS with other healthcare IT systems, such as EHR and hospital information systems (HIS), is further driving the demand for advanced software solutions.
Services play a vital role in the successful implementation and operation of RTLS in hospitals. Installation services ensure that the hardware and software components are correctly set up and integrated with existing hospital systems. Maintenance services are essential to keep the RTLS infrastructure functioning optimally and to address any technical issues that may arise. Consulting services provide hospitals with expert guidance on the best practice
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
Integrated Geodatabase: The Global Catholic Foortprint of Healthcare and WelfareBurhans, Molly A., Mrowczynski, Jon M., Schweigel, Tayler C., and Burhans, Debra T., Wacta, Christine. The Catholic Foortprint of Care Around the World (1). GoodLands and GHR Foundation, 2019.Catholic Statistics Numbers:Annuarium Statisticum Ecclesiae – Statistical Yearbook of the Church: 1980 – 2018. LIBRERIA EDITRICE VATICAN.Historical Country Boundary Geodatabase:Weidmann, Nils B., Doreen Kuse, and Kristian Skrede Gleditsch. The Geography of the International System: The CShapes Dataset. International Interactions 36 (1). 2010.https://www.tandfonline.com/doi/full/10.1080/03050620903554614GoodLands created a significant new data set for GHR and the UISG of important Church information regarding orphanages and sisters around the world as well as healthcare, welfare, and other child care institutions. The data were extracted from the gold standard of Church data, the Annuarium Statisticum Ecclesiae, published yearly by the Vatican. It is inevitable that raw data sources will contain errors. GoodLands and its partners are not responsible for misinformation within Vatican documents. We encourage error reporting to us at data@good-lands.org or directly to the Vatican.GoodLands worked with the GHR Foundation to map Catholic Healthcare and Welfare around the world using data mined from the Annuarium Statisticum Eccleasiea. GHR supported the data development and GoodLands independently invested in the mapping of information.The workflows and data models developed for this project can be used to map any global, historical country-scale data in a time-series map while accounting for country boundary changes. GoodLands created proprietary software that enables mining the Annuarium Statisticum Eccleasiea (see Software and Program Library at our home page for details).The GHR Foundation supported data extraction and cleaning of this information.GoodLands’ supported the development of maps, infographics, and applications for all healthcare data.
In 2024, Bumrungrad International Hospital ranked first among the leading hospitals in Thailand with a score of 93 percent. In the same year, it was the only hospital from Thailand that placed 130th among the 250 world's best hospitals on the Global Hospital Rating by Newsweek and Statista. Thailand is one of the most popular medical tourism hubs in Southeast Asia.
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Hospitals play a critical role in healthcare, offering specialized treatments and emergency services essential for public health, regardless of economic fluctuations or individuals' financial situations. Rising incomes and broader access to insurance have fueled demand for care in recent years, supporting hospitals' post-pandemic recovery initiated by federal policies and funding. The recovery for many hospitals was also promoted by mergers that lessened financial strains, especially in rural hospitals. This trend toward consolidation has resulted in fewer enterprises relative to establishments, enhancing hospitals' bargaining power regarding input costs and insurance reimbursements. With this improved position, hospitals are expected to see revenue climb at a CAGR of 2.0%, reaching $1.5 trillion by 2025, with a 3.2% increase in 2025 alone. Competition, economic conditions and regulatory changes will impact hospitals based on size and location. Smaller hospitals, particularly rural ones, may encounter more significant obstacles as the industry transitions from fee-based to value-based care. Independent hospitals face wage inflation, staffing shortages and drug supply costs. Although state and federal policies aim to support small rural hospitals in addressing hospital deserts, uncertainties linger over federal Medicare funding and Medicaid reimbursements, which account for nearly half of hospital care spending. Even so, increasing per capita disposable income and increasing the number of individuals with private insurance will boost revenues from private insurers and out-of-pocket payments for all hospitals, big and small. Hospitals will continue incorporating technological advancements in AI, telemedicine and wearables to enhance their services and reduce cost. These technologies aid hospital systems in strategically expanding outpatient services, mitigating the increasing competitive pressures from Ambulatory Surgery Centers (ASCs) and capitalizing on the increased needs of an aging adult population and shifts in healthcare delivery preferences. As the consolidation trend advances and technology adoption further leverages economies of scale, industry revenue is expected to strengthen at a CAGR of 2.4%, reaching $1.7 trillion by 2030, with steady profit over the period.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Neighborhood Hospitals Market size was valued at USD 158 Million in 2023 and is projected to reach USD 226 Million by 2031, at a CAGR of 6.1% from 2024 to 2031.
Global Neighborhood Hospitals Market Drivers
The market drivers for the Neighborhood Hospitals Market can be influenced by various factors. These may include:
Growing Need for Convenient Healthcare Services: Neighborhood hospitals serve the needs of their communities by providing easily accessible and convenient healthcare services. The need for nearby healthcare facilities is rising as a result of growing urbanization and hectic lives.' Attempts to Save Healthcare Costs: Due to their lower expenses and emphasis on offering basic services, neighborhood hospitals are frequently more affordable than large, traditional hospitals. Healthcare payers and providers looking to save costs overall and maximize resource utilization may find this cost-effectiveness appealing. Emphasis on Outpatient and Emergency Care: Community hospitals frequently concentrate on offering emergency care and outpatient services, meeting the demand for prompt access to healthcare for minor illnesses and accidents. This emphasis is in line with the growing global trend of healthcare systems placing more emphasis on primary care and preventative services. Technological Developments in Healthcare: Neighborhood hospitals are now able to provide a wide range of services in an efficient and effective manner because to developments in medical technology, including telemedicine, remote monitoring, and point-of-care diagnostics. In smaller healthcare settings, these technologies improve patient care and expedite clinical procedures. Population Growth and Aging Demographics: As the world's population rises, older people are becoming more prevalent, which is increasing need for healthcare services. Neighborhood hospitals, which offer easily accessible and individualized care close to people's homes, are in a good position to meet the healthcare demands of an older population. Government Support and Regulatory Policies: As part of larger healthcare reform programs, governments and regulatory authorities are encouraging the creation of neighborhood hospitals in many different nations. Investment in these facilities is encouraged by favorable policies, incentives, and regulatory frameworks, which propels market expansion. Partnerships and Collaborations: In order to establish and run community hospitals, healthcare providers, insurers, and investors are developing partnerships and collaborations. Through these partnerships, community hospital networks can reach a wider audience and have a greater impact, which stimulates market growth. Customer Preference for Community-Based Healthcare: People are becoming more and more interested in getting medical care in settings that are close to home and provide individualized attention. By developing close relationships with the local community and providing patient-centered care close to home, neighborhood hospitals satisfy this preference.
According to a ranking by Statista and Newsweek, the best hospital in the United States is the Mayo Clinic in Rochester, Minnesota. Moreover, the Mayo Clinic was also ranked as the best hospital in the world, among over 50,000 hospitals in 30 countries. Cleveland Clinic in Ohio and the Johns Hopkins Hospital in Maryland were ranked as second and third best respectively in the U.S., while they were second and forth best respectively in the World.