In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.
Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.
Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.
This National Geographic Style Map (World Edition) web map provides a reference map for the world that includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings, and landmarks, overlaid on shaded relief and a colorized physical ecosystems base for added context to conservation and biodiversity topics. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri, National Geographic or any governing authority.This basemap, included in the ArcGIS Living Atlas of the World, uses the National Geographic Style vector tile layer and the National Geographic Style Base and World Hillshade raster tile layers.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layers referenced in this map.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This application is intended for informational purposes only and is not an operational product. The tool provides the capability to access, view and interact with satellite imagery, and shows the latest view of Earth as it appears from space.This website should not be used to support operational observation, forecasting, emergency, or disaster mitigation operations, either public or private. In addition, we do not provide weather forecasts on this site — that is the mission of the National Weather Service. Please contact them for any forecast questions or issues.Using the MapsWhat does the Layering Options icon mean?The Layering Options widget provides a list of operational layers and their symbols, and allows you to turn individual layers on and off. The order in which layers appear in this widget corresponds to the layer order in the map. The top layer ‘checked’ will indicate what you are viewing in the map, and you may be unable to view the layers below.Layers with expansion arrows indicate that they contain sublayers or subtypes.Do these maps work on mobile devices and different browsers?Yes!Why are there black stripes / missing data on the map?NOAA Satellite Maps is for informational purposes only and is not an operational product; there are times when data is not available.Why are the North and South Poles dark?The raw satellite data used in these web map apps goes through several processing steps after it has been acquired from space. These steps translate the raw data into geospatial data and imagery projected onto a map. NOAA Satellite Maps uses the Mercator projection to portray the Earth's 3D surface in two dimensions. This Mercator projection does not include data at 80 degrees north and south latitude due to distortion, which is why the poles appear black in these maps. NOAA's polar satellites are a critical resource in acquiring operational data at the poles of the Earth and some of this imagery is available on our website (for example, here ).Why does the imagery load slowly?This map viewer does not load pre-generated web-ready graphics and animations like many satellite imagery apps you may be used to seeing. Instead, it downloads geospatial data from our data servers through a Map Service, and the app in your browser renders the imagery in real-time. Each pixel needs to be rendered and geolocated on the web map for it to load.How can I get the raw data and download the GIS World File for the images I choose?The geospatial data Map Service for the NOAA Satellite Maps GOES satellite imagery is located on our Satellite Maps ArcGIS REST Web Service ( available here ).We support open information sharing and integration through this RESTful Service, which can be used by a multitude of GIS software packages and web map applications (both open and licensed).Data is for display purposes only, and should not be used operationally.Are there any restrictions on using this imagery?NOAA supports an open data policy and we encourage publication of imagery from NOAA Satellite Maps; when doing so, please cite it as "NOAA" and also consider including a permalink (such as this one) to allow others to explore the imagery.For acknowledgment in scientific journals, please use:We acknowledge the use of imagery from the NOAA Satellite Maps application: LINKThis imagery is not copyrighted. You may use this material for educational or informational purposes, including photo collections, textbooks, public exhibits, computer graphical simulations and internet web pages. This general permission extends to personal web pages.About this satellite imageryWhat am I seeing in the Global Archive Map?In this map, you will see the whole Earth as captured each day by our polar satellites, based on our multi-year archive of data. This data is provided by NOAA’s polar orbiting satellites (NOAA/NASA Suomi NPP from January 2014 to April 19, 2018 and NOAA-20 from April 20, 2018 to today). The polar satellites circle the globe 14 times a day taking in one complete view of the Earth every 24 hours. This complete view is what is projected onto the flat map scene each morning.What is global true color imagery?The global ‘true color’ map displays land, water and clouds as they would appear to our eye from space, captured each day by NOAA-20.This ‘true color’ imagery is created using the VIIRS sensors onboard the NOAA-20 and Suomi NPP polar orbiting satellites. Although true-color images like this may appear to be photographs of Earth, they aren't. They are created by combining data from the three color bands on the VIIRS instrument sensitive to the red, green and blue (or RGB) wavelengths of light into one composite image. In addition, data from several other bands are often also included to cancel out or correct atmospheric interference that may blur parts of the image. Learn more about the VIIRS sensor here.About the satellitesWhat is the NOAA-20 satellite?Launched in November 2017, NOAA-20 is NOAA's newest polar-orbiting satellite, and the first of the Joint Polar Satellite System (JPSS) series, a collaborative effort between NOAA and NASA. As the backbone of the global satellite observing system, NOAA-20 circles the Earth from pole to pole and crosses the equator about 14 times daily, providing full global coverage twice daily - from 512 miles away. The satellite's instruments measure temperature, water vapor, ozone, precipitation, fire and volcanic eruptions, and can distinguish snow and ice cover under clouds. This data enables more accurate weather forecasting for the United States and the world.
Important Note: this item is marked as Deprecated and will no longer be maintained. Please use one of the following items instead:World Topographic Map Swiss Style (VT)World Topographic Map Swiss Style (VT) - deWorld Topographic Map (Vector Tile)This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes cities, water features, physiographic features, parks, landmarks, highways, roads, railways, airports, and administrative boundaries, overlaid on land cover and shaded relief imagery for added context. Alignment of boundaries is a presentation of the feature provided by our data vendors and does not imply endorsement by Esri or any governing authority.The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Africa, Australia and New Zealand; Europe and Russia; India; the continental United States and Hawaii; Canada; Mexico; most of the Middle East; Pacific Island nations; South America and Central America. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA) , U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, DeLorme, HERE, and Esri. Data for Africa and Pacific Island nations from ~1:288k to ~1:4k (~1:1k in select areas) was sourced from OpenStreetMap contributors. The data for the World Topographic Map is provided by the GIS community. You can contribute your data to this service and have it served by Esri. For details on the coverage in this map and the users who contributed data for this map via the Community Maps Program, view the list of Contributors for the World Topographic Map.Feedback: Have you ever seen a problem in the Esri World Topographic Map community basemap that you wanted to see fixed? You can use the Topographic Map Feedback web map to provide feedback on issues or errors that you see in the Esri World Topographic Map. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
NCED is currently involved in researching the effectiveness of anaglyph maps in the classroom and are working with educators and scientists to interpret various Earth-surface processes. Based on the findings of the research, various activities and interpretive information will be developed and available for educators to use in their classrooms. Keep checking back with this website because activities and maps are always being updated. We believe that anaglyph maps are an important tool in helping students see the world and are working to further develop materials and activities to support educators in their use of the maps.
This website has various 3-D maps and supporting materials that are available for download. Maps can be printed, viewed on computer monitors, or projected on to screens for larger audiences. Keep an eye on our website for more maps, activities and new information. Let us know how you use anaglyph maps in your classroom. Email any ideas or activities you have to ncedmaps@umn.edu
Anaglyph paper maps are a cost effective offshoot of the GeoWall Project. Geowall is a high end visualization tool developed for use in the University of Minnesota's Geology and Geophysics Department. Because of its effectiveness it has been expanded to 300 institutions across the United States. GeoWall projects 3-D images and allows students to see 3-D representations but is limited because of the technology. Paper maps are a cost effective solution that allows anaglyph technology to be used in classroom and field-based applications.
Maps are best when viewed with RED/CYAN anaglyph glasses!
A note on downloading: "viewable" maps are .jpg files; "high-quality downloads" are .tif files. While it is possible to view the latter in a web-browser in most cases, the download may be slow. As an alternative, try right-clicking on the link to the high-quality download and choosing "save" from the pop-up menu that results. Save the file to your own machine, then try opening the saved copy. This may be faster than clicking directly on the link to open it in the browser.
World Map: 3-D map that highlights oceanic bathymetry and plate boundaries.
Continental United States: 3-D grayscale map of the Lower 48.
Western United States: 3-D grayscale map of the Western United States with state boundaries.
Regional Map: 3-D greyscale map stretching from Hudson Bay to the Central Great Plains. This map includes the Western Great Lakes and the Canadian Shield.
Minnesota Map: 3-D greyscale map of Minnesota with county and state boundaries.
Twin Cities: 3-D map extending beyond Minneapolis and St. Paul.
Twin Cities Confluence Map: 3-D map highlighting the confluence of the Mississippi and Minnesota Rivers. This map includes most of Minneapolis and St. Paul.
Minneapolis, MN: 3-D topographical map of South Minneapolis.
Bassets Creek, Minneapolis: 3-D topographical map of the Bassets Creek watershed.
North Minneapolis: 3-D topographical map highlighting North Minneapolis and the Mississippi River.
St. Paul, MN: 3-D topographical map of St. Paul.
Western Suburbs, Twin Cities: 3-D topographical map of St. Louis Park, Hopkins and Minnetonka area.
Minnesota River Valley Suburbs, Twin Cities: 3-D topographical map of Bloomington, Eden Prairie and Edina area.
Southern Suburbs, Twin Cities: 3-D topographical map of Burnsville, Lakeville and Prior Lake area.
Southeast Suburbs, Twin Cities: 3-D topographical map of South St. Paul, Mendota Heights, Apple Valley and Eagan area.
Northeast Suburbs, Twin Cities: 3-D topographical map of White Bear Lake, Maplewood and Roseville area.
Northwest Suburbs, Mississippi River, Twin Cities: 3-D topographical map of North Minneapolis, Brooklyn Center and Maple Grove area.
Blaine, MN: 3-D map of Blaine and the Mississippi River.
White Bear Lake, MN: 3-D topographical map of White Bear Lake and the surrounding area.
Maple Grove, MN: 3-D topographical mmap of the NW suburbs of the Twin Cities.
World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.
OVERVIEWThis site is dedicated to raising the level of spatial and data literacy used in public policy. We invite you to explore curated content, training, best practices, and datasets that can provide a baseline for your research, analysis, and policy recommendations. Learn about emerging policy questions and how GIS can be used to help come up with solutions to those questions.EXPLOREGo to your area of interest and explore hundreds of maps about various topics such as social equity, economic opportunity, public safety, and more. Browse and view the maps, or collect them and share via a simple URL. Sharing a collection of maps is an easy way to use maps as a tool for understanding. Help policymakers and stakeholders use data as a driving factor for policy decisions in your area.ISSUESBrowse different categories to find data layers, maps, and tools. Use this set of content as a driving force for your GIS workflows related to policy. RESOURCESTo maximize your experience with the Policy Maps, we’ve assembled education, training, best practices, and industry perspectives that help raise your data literacy, provide you with models, and connect you with the work of your peers.
The Military Bases dataset was last updated on October 23, 2024 and are defined by Fiscal Year 2023 data, from the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The dataset depicts the authoritative locations of the most commonly known Department of Defense (DoD) sites, installations, ranges, and training areas world-wide. These sites encompass land which is federally owned or otherwise managed. This dataset was created from source data provided by the four Military Service Component headquarters and was compiled by the Defense Installation Spatial Data Infrastructure (DISDI) Program within the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment. Only sites reported in the BSR or released in a map supplementing the Foreign Investment Risk Review Modernization Act of 2018 (FIRRMA) Real Estate Regulation (31 CFR Part 802) were considered for inclusion. This list does not necessarily represent a comprehensive collection of all Department of Defense facilities. For inventory purposes, installations are comprised of sites, where a site is defined as a specific geographic location of federally owned or managed land and is assigned to military installation. DoD installations are commonly referred to as a base, camp, post, station, yard, center, homeport facility for any ship, or other activity under the jurisdiction, custody, control of the DoD.
While every attempt has been made to provide the best available data quality, this data set is intended for use at mapping scales between 1:50,000 and 1:3,000,000. For this reason, boundaries in this data set may not perfectly align with DoD site boundaries depicted in other federal data sources. Maps produced at a scale of 1:50,000 or smaller which otherwise comply with National Map Accuracy Standards, will remain compliant when this data is incorporated. Boundary data is most suitable for larger scale maps; point locations are better suited for mapping scales between 1:250,000 and 1:3,000,000.
If a site is part of a Joint Base (effective/designated on 1 October, 2010) as established under the 2005 Base Realignment and Closure process, it is attributed with the name of the Joint Base. All sites comprising a Joint Base are also attributed to the responsible DoD Component, which is not necessarily the pre-2005 Component responsible for the site.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri. The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound
The National Mine Map Repository (NMMR) maintains point locations for mines appearing on maps within its archive. This dataset is intended to help connect the Office of Surface Mining Reclamation and Enforcement, other federal, state, and local government agencies, private industry, and the general public with archived mine maps in the NMMR's collection. The coordinates for mine point locations represent the best information the NMMR has for the location of the mine. As much as possible, the NMMR strives to find precise locations for all historic mines appearing on mine maps. When this is not possible, another feature as close to the mine as is known is used. This information is reflected in the mine point symbols. However, the NMMR cannot guarantee the accuracy of mine point locations or any other information on or derived from mine maps. The NMMR is part of the United States Department of the Interior, Office of Surface Mining Reclamation and Enforcement (OSMRE). The mission of the NMMR is to preserve abandoned mine maps, to correlate those maps to the surface topography, and to provide the public with quality map products and services. It serves as a point of reference for maps and other information on surface and underground coal, metal, and non-metal mines from throughout the United States. It also serves as a location to retrieve mine maps in an emergency. Some of the information that can be found in the repository includes: Mine and company names, Mine plans including mains, rooms, and pillars, Man-ways, shafts, and mine surface openings. Geological information such as coal bed names, bed thicknesses, bed depths and elevations, bed outcrops, drill-hole data, cross-sections, stratigraphic columns, and mineral assays. Geographical information including historic railroad lines, roads, coal towns, surface facilities and structures, ponds, streams, and property survey lines, gas well and drill-hole locations. Please note: Map images are not available for download from this dataset. They can be requested by contacting NMMR staff and providing them with the desired Document Numbers. NMMR staff also have additional search capabilities and can fulfill more complex requests if necessary. See the NMMR website homepage for contact information: https://www.osmre.gov/programs/national-mine-map-repository. There is no charge for noncommercial use of the maps. Commercial uses will incur a $46/hour research fee for fulfilling requests.
Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as input were acquired by the SuperDove cubesats comprising the PlanetScope constellation, but the original images cannot be redistributed due to licensing restrictions; the end products derived from these images are provided instead. The large number of cubesats in the PlanetScope constellation allows for frequent temporal coverage and the neural network-based approach takes advantage of this high density time series of information by estimating depth via one of four NNDR methods described in the manuscript: 1. Mean-spec: the images are averaged over time and the resulting mean image is used as input to the NNDR. 2. Mean-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is averaged to obtain the final depth map. 3. NN-depth: a separate NNDR is applied independently to each image in the time series and the resulting time series of depth estimates is then used as input to a second, ensembling neural network that essentially weights the depth estimates from the individual images so as to optimize the agreement between the image-derived depth estimates and field measurements of water depth used for training; the output from the ensembling neural network serves as the final depth map. 4. Optimal single image: a separate NNDR is applied independently to each image in the time series and only the image that yields the strongest agreement between the image-derived depth estimates and the field measurements of water depth used for training is used as the final depth map. MATLAB (Version 24.1, including the Deep Learning Toolbox) source code for performing this analysis is provided in the function NN_depth_ensembling.m and the figure included on this landing page provides a flow chart illustrating the four different neural network-based depth retrieval methods. As examples of the resulting models, MATLAB *.mat data files containing the best-performing neural network model for each site are provided below, along with a file that lists the PlanetScope image identifiers for the images that were used for each site. To develop and test this new NNDR approach, the method was applied to satellite images from three rivers across the U.S.: the American, Colorado, and Potomac. For each site, field measurements of water depth available through other data releases were used for training and validation. The depth maps produced via each of the four methods described above are provided as GeoTIFF files, with file name suffixes that indicate the method employed: X_mean-spec.tif, X_mean-depth.tif, X_NN-depth.tif, and X-single-image.tif, where X denotes the site name. The spatial resolution of the depth maps is 3 meters and the pixel values within each map are water depth estimates in units of meters.
http://dcat-ap.de/def/licenses/other-closedhttp://dcat-ap.de/def/licenses/other-closed
When you build with TomTom Maps APIs and map data sets, you build with a partner that combines three decades of mapping experience with the speed and soul of a start-up. We’re proud of our roots, and we never stop looking ahead – working together with you to bring the best, freshest map data and tech to people all over the world. When change happens in the real world, our transactional mapmaking ecosystem allows us to detect, verify and deliver it to the map fast – ensuring your customers, drivers and users always enjoy the most up-to-date map data. That same speed and flexibility extends to how we help you build your mapping app: You’re in control of your map data, choosing what you want to include in your final product.
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
These Soil Mapping Data Packages include 1. a Soil Map dataset which includes the equivalents to Soil Project Boundaries, Soil Survey Spatial View mapping polygons with attributes from the Soil Name and Layer Files, plus + A Soil Site dataset which includes soil pit site information and detailed soil pit descriptions and any associated lab analyses, and + The Soil Data Dictionary which documents the fields and allowable codes within the data. The Soil Map geodatabase contains the 'best available' data ranging from 1:20,000 scale to 1:250,000 scale with overlapping data removed. The choice of the datasets that remain is based on connectivity to the soil attributes (soil name and layer files), map scale and survey date. (Note: the BC Soil Landscapes of Canada (BCSLC) 1:1,000,000 data has not been included in the Soil_Map or SIFT, but is available from: CANSIS. (A complete soils data package with overlapping soil survey mapping and BCSLC is available on request. Note that the soil survey data with attributes can also be viewed interactively in the [Soil Information Finder Tool](The Soil Map dataset is also available for interactive map viewing or as KMZs from the Soil Information Finder Tool website.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
Data licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
The digital topographic maps (DTK) are generated from digital landscape and terrain models as well as the official property cadastre information system ALKIS and visualised according to the nationwide signature catalogue of the presentation editions ‘basemap.de P10’ grid. The DTK are available nationwide and in the uniform geodetic reference system and map projection for the state of Brandenburg. They are available as raster data (coloured/grey) and as web services. When using the data, the license conditions must be observed.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The top of the Upper Cretaceous Dakota Sandstone is present in the subsurface throughout the Uinta and Piceance basins of UT and CO and is easily recognized in the subsurface from geophysical well logs. This digital data release captures in digital form the results of two previously published contoured subsurface maps that were constructed on the top of Dakota Sandstone datum; one of the studies also included a map constructed on the top of the overlying Mancos Shale. A structure contour map of the top of the Dakota Sandstone was constructed as part of a U.S. Geological Survey Petroleum Systems and Geologic Assessment of Oil and Gas in the Uinta-Piceance Province, Utah and Colorado (Roberts, 2003). This surface, constructed using data from oil and gas wells, from digital geologic maps of Utah and Colorado, and from thicknesses of overlying stratigraphic units, depicts the overall configuration of major structural trends of the present-day Uinta and Piceance basins and was used to ...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
See full Data Guide here. This layer includes polygon features that depict protected open space for towns of the Protected Open Space Mapping (POSM) project, which is administered by the Connecticut Department of Energy and Environmental Protection, Land Acquisition and Management. Only parcels that meet the criteria of protected open space as defined in the POSM project are in this layer. Protected open space is defined as: (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non-facility-based outdoor recreation, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities. Includes protected open space data for the towns of Andover, Ansonia, Ashford, Avon, Beacon Falls, Canaan, Clinton, Berlin, Bethany, Bethel, Bethlehem, Bloomfield, Bridgewater, Bolton, Brookfield, Brooklyn, Canterbury, Canton, Chaplin, Cheshire, Colchester, Colebrook, Columbia, Cornwall, Coventry, Cromwell, Danbury, Derby, East Granby, East Haddam, East Hampton, East Hartford, East Windsor, Eastford, Ellington, Enfield, Essex, Farmington, Franklin, Glastonbury, Goshen, Granby, Griswold, Groton, Guilford, Haddam, Hampton, Hartford, Hebron, Kent, Killingworth, Lebanon, Ledyard, Lisbon, Litchfield, Madison, Manchester, Mansfield, Marlborough, Meriden, Middlebury, Middlefield, Middletown, Monroe, Montville, Morris, New Britain, New Canaan, New Fairfield, New Milford, New Hartford, Newington, Newtown, Norfolk, North, Norwich, Preston, Ridgefield, Shelton, Stonington, Oxford, Plainfield, Plainville, Pomfret, Portland, Prospect, Putnam, Redding, Rocky Hill, Roxbury, Salem, Salisbury, Scotland, Seymour, Sharon, Sherman, Simsbury, Somers, South Windsor, Southbury, Southington, Sprague, Sterling, Suffield, Thomaston, Thompson, Tolland, Torrington, Union, Vernon, Wallingford, Windham, Warren, Washington, Waterbury, Watertown, West Hartford, Westbrook, Weston, Wethersfield, Willington, Wilton, Windsor, Windsor Locks, Wolcott, Woodbridge, Woodbury, and Woodstock. Additional towns are added to this list as they are completed. The layer is based on information from various sources collected and compiled during the period from March 2005 through the present. These sources include but are not limited to municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions as of the date of research at each city or town hall. The Protected Open Space layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town Assessor's lot numbering system, and system-defined (automatically generated) fields. The Protected Open Space layer has an accompanying table containing more detailed information about each feature (parcel). This table is called Protected Open Space Dat, and can be joined to Protected Open Space in ArcMap using the parcel ID (PAR_ID) field. Detailed information in the Protected Open Space Data attribute table includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the unique parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, and acreage. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygons that represent the best available locational information, and are "best fit" to the land base available for each.
The Connecticut Department of Environmental Protection's (CTDEP) Permanently Protected Open Space Phase Mapping Project Phase 1 (Protected Open Space Phase1) layer includes permanently protected open space parcels in towns in Phase 1 that meet the CTDEP's definition for this project, the Permanently Protected Open Space Mapping (CT POSM) Project. The CTDEP defines permanently protected open space as (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non facility-based outdoor recreations, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities.
Towns in Phase 1 of the CT POSM project are situated along the CT coast and portions of the Thames River and are the following: Branford, Bridgeport, Chester, Clinton, Darien, Deep River, East Haven, East Lyme, Essex, Fairfield, Greenwich, Groton, Guilford, Hamden, Ledyard, Lyme, Madison, Milford, Montville, New Haven, New London, North Branford, North Haven, Norwalk, Norwich, Old Lyme, Old Saybrook, Orange, Preston, Shelton, Stamford, Stonington, Stratford, Waterford, West Haven, Westbrook, Westport.
For the purposes of the project a number of categories or classifications of open space have also been created. These include: Land Trust, Land Trust with buidlings, Private, Private with buildings, Utility Company, Utility Company with buildings, Federal, State, Municipal, Municipal with buildings, Conservation easement, and non-DEP State land. The layer is based on information from various sources collected and compiled during the period from August 2002 trhough October 2003. These sources include municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions on the date of research at each city or town hall.
The Protected Open Space Phase1 layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town's Assessor lot numbering system, and system-defined (automatically generated) fields. In addition, the Protected_Open_Space_Phase1 layer has an accompanying table containing more detailed information about each parcel's collection, standardization and storage. This table is called Protected Open Space Phase1 Data and can be joined to Protected Open Space Phase1 in ArcMap using the parcel ID (PAR_ID) field. Detailed information includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the project-specific parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, acreage collected during site reconaissance and the data source. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygon feature type that represent the best available locational information, i.e. "best fit" to the land base available for each.
Phase 1 of the Protected Open Space Mapping (POSM) Project was accomplished by a contractor using only a querying process to identify open space. The contractor obtained assessor's data from the various towns and created programs to cull open space parcels strictly by query processes. We have found many errors and omissions in the data, but at this point in the project we cannot revisit all the coastal towns. Therefore, this data is being sent with a disclaimer for accuracy. You are welcome to use it but not to publish it. Please note that we do not include any water company parcels despite them being listed as part of our criteria because we must first obtain written clarification and clearance from the U.S. Department of Homeland Security.
We have since changed our data collection method for Phase 2 of this project. DEP staff now visit each town hall and thoroughly research the land records. The project is expected to be complete by 2010.
The Story Map Basic application is a simple map viewer with a minimalist user interface. Apart from the title bar, an optional legend, and a configurable search box the map fills the screen. Use this app to let your map speak for itself. Your users can click features on the map to get more information in pop-ups. The Story Map Basic application puts all the emphasis on your map, so it works best when your map has great cartography and tells a clear story.You can create a Basic story map by sharing a web map as an application from the map viewer. You can also click the 'Create a Web App' button on this page to create a story map with this application. Optionally, the application source code can be downloaded for further customization and hosted on your own web server.For more information about the Story Map Basic application, a step-by-step tutorial, and a gallery of examples, please see this page on the Esri Story Maps website.
In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.
Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.
Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.