Facebook
TwitterIn 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index  Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index  Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries. 
Facebook
TwitterThis dataset shows the the world's best hospital in 2023 issued by the Newsweek and Statista.
Facebook
TwitterThe healthcare ranking reflects the quality of health care and access to health services in different countries. The assessment includes various factors such as life expectancy, access to medical services, healthcare funding, and technologies.
Facebook
TwitterIn 2023, the health care system in Finland ranked first with a care index score of ****, followed by Belgium and Japan. Care systems index score is measured using multiple indicators from various public databases, it evaluates the capacity of a health system to treat and cure diseases and illnesses, once it is detected in the population This statistic shows the care systems ranking of countries worldwide in 2023, by their index score.
Facebook
TwitterAccording to a survey from *************, Taiwan was ranked as the best country for expat healthcare, followed by South Korea and Qatar. This statistic represents the ranking of top ten countries with best healthcare for expats worldwide in 2023.
Facebook
TwitterAccording to a ranking by Statista and Newsweek, the best hospital in the United States is the *********** in Rochester, Minnesota. Moreover, the *********** was also ranked as the best hospital in the world, among over 50,000 hospitals in 30 countries. **************** in Ohio and the ************* Hospital in Maryland were ranked as second and third best respectively in the U.S., while they were second and forth best respectively in the World.
Facebook
TwitterDifferent countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Facebook
TwitterAccording to a ranking by Statista and Newsweek, the world's best hospital is the *********** in Rochester, Minnesota. A total of **** U.S. hospitals made it to the top ten list, while one hospital in each of the following countries was also ranked among the top ten best hospitals in the world: Canada, Sweden, Germany, Israel, Singapore, and Switzerland.
Facebook
TwitterData on the top universities for Medical and Health in 2025, including disciplines such as Medicine and Dentistry, and Other Health Subjects.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 36 countries was 4.44 hospital beds. The highest value was in South Korea: 12.65 hospital beds and the lowest value was in Mexico: 0.99 hospital beds. The indicator is available from 1960 to 2021. Below is a chart for all countries where data are available.
Facebook
TwitterBy Health [source]
This dataset contains ratings of hospitals, based on the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS). This survey collects data from hospital patients on their experiences during an inpatient stay. The list includes several indicators to help gauge a hospital's quality, such as star ratings based on patient opinions and percentage of positive answers to HCAHPS questions. Additionally, there are measures such as the number of completed surveys, survey response rate percent and linear mean value which assist in evaluating patient experience at each medical institution. With this comprehensive dataset you can easily draw comparisons between hospitals and make informed decisions about healthcare services provided in your area
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides useful information on the quality of care that hospitals provide. This dataset provides ratings and reviews of several hospitals, making it easy to compare hospitals in order to find out which hospital may best meet your needs.
The following guide will walk you through how to use this dataset effectively:
- Navigate the different columns available in this dataset by scrolling through the table. These include Hospital Name, Address, City, State, ZIP Code, County Name, Phone Number and HCAHPS Question among others.
- Examine important information such as the patient survey star rating and HCAHPS linear mean value for each hospital included in the dataset in order to evaluate it's performance against other hospitals based on standards set out by HCAHPS .
- Read any footnotes associated with each column carefully in order to fully understand what exactly is being measured. These may directly affect your evaluation of a particular hospital’s performance compared to others included in this dataset or even more so when compared against external sources of data outside this dataset such as other surveys or studies related to health care quality measurement metrics within that state or region where applicable & relevant (i..e Measure Start Date and Measure End Date).
Pay careful attention also when evaluating factors related to survey response rates (e..g Survey Response Rate Percent Footnote) & what percentages are being reported here within each category; these figures may selectively bias results so ensure full transparency is achieved by reviewing all potential influencing factors/variables prior commencing investigations/data analysis/interpretation based upon this data-set alone(or any subset thereof).
By following these steps you should be able set up your own criteria for measuring various aspects of health care quality across different states & cities - ensuring optimal access & safety measures for both patients & healthcare providers alike over time - thus ultimately aiding decision making processes towards improved patient outcomes worldwide!
- Tracking patient experience trends over time: This dataset can be used to analyze trends in patient experience over time by identifying changes in survey responses, star ratings, and response rates across hospitals.
- Establishing a benchmark for high-quality hospital care: By studying the scores of the top-performing hospitals within each category, healthcare administrators can set standards and benchmarks for quality of care in their own hospitals.
- Comparing hospital ratings to inform decision making: Patients and family members looking to book an appointment at a hospital or doctors office can use this dataset to compare different facilities’ HCAHPS scores and make an informed decision about where they would like to go for their medical treatment
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - **Keep int...
Facebook
TwitterAccording to a study from 2024, ******* medical infrastructure and professionals were ranked as the best in the world, scoring **** out of a possible 100. Ranked as second and third were Italy and Iceland. This statistic represents the ranking of the top 20 countries with the best medical infrastructure and professionals worldwide in 2024, by index score.
Facebook
TwitterSuccess.ai’s Healthcare Professionals Data for Healthcare & Hospital Executives in Europe provides a reliable and comprehensive dataset tailored for businesses aiming to connect with decision-makers in the European healthcare and hospital sectors. Covering healthcare executives, hospital administrators, and medical directors, this dataset offers verified contact details, professional insights, and leadership profiles.
With access to over 700 million verified global profiles and data from 70 million businesses, Success.ai ensures your outreach, market research, and partnership strategies are powered by accurate, continuously updated, and GDPR-compliant data. Backed by our Best Price Guarantee, this solution is indispensable for navigating and thriving in Europe’s healthcare industry.
Why Choose Success.ai’s Healthcare Professionals Data?
Verified Contact Data for Targeted Engagement
Comprehensive Coverage of European Healthcare Professionals
Continuously Updated Datasets
Ethical and Compliant
Data Highlights:
Key Features of the Dataset:
Comprehensive Professional Profiles
Advanced Filters for Precision Campaigns
Healthcare Industry Insights
AI-Driven Enrichment
Strategic Use Cases:
Marketing and Outreach to Healthcare Executives
Partnership Development and Collaboration
Market Research and Competitive Analysis
Recruitment and Workforce Solutions
Why Choose Success.ai?
Best Price Guarantee
Seamless Integration
...
Facebook
TwitterBy Health Data New York [source]
This dataset contains the locations of Article 28, Article 36 and Article 40 health care facilities and programs from the Health Facilities Information System (HFIS), including hospitals, nursing homes, certified home health care agencies, hospices and diagnostic treatment centers. These facilities are fundamental to providing necessary medical services throughout the state and it is up to local governments to properly track them.
In this dataset you will find information such as facility name, short description, address information for both the operator and cooperator (as applicable), zip codes for each location, a unique certificate number issued by HFIS for each facility or program, latitude/longitude coordinates for each location as well as the type of ownership of that facility. All of this data helps ensure that people can access essential medical services in their area quickly and easily.
So no matter what type of medical service you are looking for or which locality within New York State you're located in, you can use this insight-backed dataset to understand where these important services are located near you! Before using the data provided be sure to download and read through our Terms of Service for an understanding of proper usage requirements
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be used to provide information about the location of Article 28, Article 36 and Article 40 health care facilities and programs. This data provides information about each health facility, such as its name, address, phone number, website, type of ownership and more. With this data you can easily explore which health care facilities are available in your area or around the world.
To get started with this dataset there are a few simple steps you need to take: - Read through the Terms of Service: Be sure to read through all terms before using this dataset as it sets out what is allowed and not allowed when using it. - View the Column Labels: This will help you understand which columns best correspond with any searches or analysis that you want to do on this data set - Conduct Your Search/Analysis: Once you've determined which columns best match your query begin running your own searches/analysis on the Health Facilities Information System (HFIS). - Filter for Relevant Datapoints: Utilize filters if needed to narrow down specific datapoints that are relevant for your search/analysis 5 Enjoy Your Results!: Enjoy exploring all of the results of your analysis
- Create an interactive map to show the distribution of health facilities and programs across different states, cities and regions.
- Analyze the data to identify areas with increased or decreased need for certain types of health care services and develop appropriate strategies for service improvisation in these areas.
- Use customer feedback from patient surveys to compare facilities based on their performance in providing quality healthcare services including cost efficiency and patient satisfaction rates, in order to improve the overall standards of care within these establishments
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: health-facility-general-information-1.csv | Column name | Description | |:---------------------------------|:-----------------------------------------------------------------| | Facility Name | Name of the health care facility or program. (String) | | Short Description | A brief description of the facility or program. (String) | | Facility Open Date | The date the facility or program opened. (Date) | | Facility Address 1 | The first line of the facility's address. (String) | | Facility Address 2 | The second line of the facility's address. (String) | | Facility City | The city the facility is located in. (String) | | Facility State | The state the facility is located in. (String) | | Facility Zip Code | The zip code of the facility. (String) ...
Facebook
TwitterAccording to a 2021 health care systems ranking among selected high-income countries, the United States came last in the overall ranking of its health care system performance. The overall ranking was based on five performance categories, including access to care, care process, administrative efficiency, equity, and health care outcomes. For the category care process, which measures preventive care, safe and coordinated care among others, the U.S. was ranked second, while New Zealand took first place. This statistic illustrates the health care process rankings of the United States' health care system compared to ten other high-income countries in 2021.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Health Care Information System market size was valued at approximately USD 90 billion in 2023 and is projected to reach USD 190 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.5% during the forecast period. Factors such as the increasing adoption of digital health solutions, rising demand for accurate and timely patient information, and government initiatives promoting the deployment of electronic health records (EHR) are driving this growth.
One of the primary growth drivers for the Health Care Information System market is the increasing adoption of electronic medical records (EMRs) and electronic health records (EHRs). These systems have revolutionized the way patient data is stored, accessed, and analyzed, leading to improved patient outcomes and streamlined healthcare operations. The integration of advanced technologies like AI and machine learning with these systems further enhances their capabilities, enabling predictive analytics and better decision-making in clinical settings.
Another significant factor contributing to market growth is the rising need for efficient healthcare management systems. With an increasing global population and the prevalence of chronic diseases, healthcare providers are under immense pressure to deliver high-quality care while optimizing resources. Health Care Information Systems offer solutions for efficient patient management, billing, scheduling, and resource allocation, thereby enhancing the overall efficiency of healthcare delivery models.
Additionally, governmental policies and incentives aimed at digitizing healthcare infrastructures are playing a crucial role in market expansion. Various governments around the world are implementing regulations and providing financial incentives to encourage the adoption of health care information systems. This regulatory push is particularly strong in regions such as North America and Europe, where governments are focused on improving healthcare quality and patient safety through the use of digital solutions.
From a regional perspective, the Asia Pacific region is expected to witness substantial growth over the forecast period. This growth can be attributed to the rising investments in healthcare infrastructure, increasing awareness about digital health solutions, and the growing focus on improving healthcare services in countries like China and India. Moreover, the region's large population base and the increasing prevalence of lifestyle-related diseases provide a significant market opportunity for health care information systems.
The integration of a Healthcare Decision Support System (HDSS) within health care information systems is becoming increasingly vital. These systems provide clinicians with critical insights derived from patient data, enabling more informed decision-making processes. By leveraging data analytics and evidence-based guidelines, HDSS can assist healthcare providers in diagnosing conditions, selecting appropriate treatments, and managing patient care more effectively. The adoption of HDSS is driven by the need to improve patient outcomes and reduce the incidence of medical errors, which are often attributed to information gaps and cognitive overload among healthcare professionals. As healthcare systems become more complex, the role of decision support systems in ensuring quality care and operational efficiency cannot be overstated.
The Health Care Information System market can be segmented by components into software, hardware, and services. The software segment is expected to dominate the market due to the increasing adoption of various applications such as EHRs, clinical decision support systems, and practice management software. These software solutions are essential for managing patient data, enhancing clinical workflows, and ensuring compliance with regulatory standards. The rapid advancements in software technologies, including AI and machine learning, are further driving the adoption of health care information systems.
In contrast, the hardware segment, which includes computing devices, storage devices, and networking equipment, plays a crucial role in the deployment and functioning of healthcare information systems. While hardware is essential for the infrastructure, its market share is relatively smaller compared to software due to the higher frequency of software upgrades and updates. However, the d
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Healthcare Information Software Market Size 2024-2028
The healthcare information software market size is forecast to increase by USD 8.75 billion at a CAGR of 5.65% between 2023 and 2028.
In the dynamic healthcare landscape, smaller healthcare organizations and outpatient care facilities are increasingly adopting advanced information management systems to streamline operations and enhance patient care. The information-intensive nature of healthcare necessitates the use of efficient and integrated solutions for effective data exchange and decision-making. The clinical solutions segment, including revenue cycle management (RCM) solutions, is witnessing significant growth due to the need for cost reduction and improved patient care. The healthcare industry in the US is undergoing a digital transformation, with a significant focus on implementing advanced software solutions to enhance patient care, improve healthcare quality, and reduce costs.
Moreover, key trends include the adoption of AI in healthcare for improved diagnostics and patient outcomes, as well as the integration of consumer technology companies' offerings for better patient engagement. However, challenges persist, such as ensuring usability, interoperability, and data security in the face of growing cyberattacks. Health systems are focusing on IT architecture and data communication standards to address these concerns and provide comprehensive healthcare provider solutions. The cost of care and the need for efficient data exchange remain critical factors driving market growth.
What will be the Size of the Market During the Forecast Period?
Request Free Sample
The market is witnessing notable growth due to various factors. Patient Safety and Quality: The need for enhanced patient safety and improved healthcare quality is a major driver for the adoption of healthcare information software. These solutions enable healthcare providers to access centralized medical records, ensuring accurate and timely diagnosis and treatment. Additionally, healthcare IT infrastructure, including telehealth and e-prescribing systems, facilitates remote patient monitoring and teleconsultation, enabling better care for patients with chronic diseases.
Moreover, the integration of healthcare systems is another key trend in the market. Healthcare organizations are investing in software solutions that enable seamless data exchange between different healthcare providers and departments. This not only enhances patient care but also reduces administrative costs and improves overall efficiency. The widespread use of smartphones and improved internet coverage in the US is fueling the growth of the market. Remote patient monitoring and teleconsultation are becoming increasingly popular, enabling patients to access healthcare services from the comfort of their homes. Furthermore, smartphones and mobile applications are being used to facilitate e-prescribing and other clinical solutions.
However, the rising healthcare costs in the US are also driving the adoption of healthcare information software. These solutions enable healthcare providers to streamline their operations, reduce administrative costs, and improve patient outcomes, leading to cost savings in the long run. The use of big data analytics and artificial intelligence (AI) in healthcare is a growing trend. These technologies enable healthcare providers to analyze patient data and identify patterns and trends, leading to better diagnosis and treatment. Additionally, AI-powered chatbots and virtual assistants are being used to provide patients with personalized healthcare advice and support.
In conclusion, the market is witnessing significant growth due to factors such as the need for enhanced patient safety and quality, the integration of healthcare systems, the widespread use of smartphones and internet coverage, and rising healthcare costs. The use of big data analytics and AI is also a growing trend, enabling healthcare providers to provide more personalized and effective care to their patients.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Application
HIS
PIS
Deployment
On premises
Cloud based
Geography
North America
US
Europe
Germany
UK
Asia
China
Japan
Rest of World (ROW)
By Application Insights
The HIS segment is estimated to witness significant growth during the forecast period.
Healthcare Information Software (HIS) is a vital solution for managing the intricate requirements of healthcare systems globally. A significant component of HIS is Electronic Health Records (EHR), which offers digital solutions for patient d
Facebook
TwitterBy Eva Murray [source]
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
To get started with this data, begin by exploring the location and time columns as these will provide a breakdown of which countries are represented in the dataset as well as when each observation was collected. To drill down further into the analysis, use indicators, subjects and measures fields for comparison between healthcare spending for different topics like drug access or acute care across countries over time. The values field contains actual values related to healthcare spending while flag codes tell you if there are any discrepancies in data quality so it is important look into those too if necessary.
This dataset is useful for research relatedto how global health expenditures have varied across different countries over time and difference sources of funding among a few other applications. Understanding what's included in this dataset will help you determine how best to use it when doing comparative country-level analyses or international studies on healthcare funding sources over time
- Identify countries with high public health spending as a percentage of GDP and determine if their population has better health outcomes than those with lower spending.
- Compare public health investments across various countries during the same period to ascertain areas that need more attention, such as medical research, vaccinations, medication and healthcare staffing.
- Determine the trends in health expenditures over time for key indicators such as life expectancy to gain insights into how well a country is managing its healthcare sector
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: DP_LIVE_18102020154144776.csv | Column name | Description | |:---------------|:-----------------------------------------| | LOCATION | Country or region of the data. (String) | | INDICATOR | Health spending indicator. (String) | | SUBJECT | Health spending subject. (String) | | MEASURE | Measurement of health spending. (String) | | FREQUENCY | Frequency of data collection. (String) | | TIME | Year of data collection. (Integer) | | Value | Value of health spending. (Float) | | Flag Codes | Codes related to data quality. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Eva Murray.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Neighborhood Hospitals Market size was valued at USD 158 Million in 2023 and is projected to reach USD 226 Million by 2031, at a CAGR of 6.1% from 2024 to 2031.
Global Neighborhood Hospitals Market Drivers
The market drivers for the Neighborhood Hospitals Market can be influenced by various factors. These may include:
Growing Need for Convenient Healthcare Services: Neighborhood hospitals serve the needs of their communities by providing easily accessible and convenient healthcare services. The need for nearby healthcare facilities is rising as a result of growing urbanization and hectic lives.' Attempts to Save Healthcare Costs: Due to their lower expenses and emphasis on offering basic services, neighborhood hospitals are frequently more affordable than large, traditional hospitals. Healthcare payers and providers looking to save costs overall and maximize resource utilization may find this cost-effectiveness appealing. Emphasis on Outpatient and Emergency Care: Community hospitals frequently concentrate on offering emergency care and outpatient services, meeting the demand for prompt access to healthcare for minor illnesses and accidents. This emphasis is in line with the growing global trend of healthcare systems placing more emphasis on primary care and preventative services. Technological Developments in Healthcare: Neighborhood hospitals are now able to provide a wide range of services in an efficient and effective manner because to developments in medical technology, including telemedicine, remote monitoring, and point-of-care diagnostics. In smaller healthcare settings, these technologies improve patient care and expedite clinical procedures. Population Growth and Aging Demographics: As the world's population rises, older people are becoming more prevalent, which is increasing need for healthcare services. Neighborhood hospitals, which offer easily accessible and individualized care close to people's homes, are in a good position to meet the healthcare demands of an older population. Government Support and Regulatory Policies: As part of larger healthcare reform programs, governments and regulatory authorities are encouraging the creation of neighborhood hospitals in many different nations. Investment in these facilities is encouraged by favorable policies, incentives, and regulatory frameworks, which propels market expansion. Partnerships and Collaborations: In order to establish and run community hospitals, healthcare providers, insurers, and investors are developing partnerships and collaborations. Through these partnerships, community hospital networks can reach a wider audience and have a greater impact, which stimulates market growth. Customer Preference for Community-Based Healthcare: People are becoming more and more interested in getting medical care in settings that are close to home and provide individualized attention. By developing close relationships with the local community and providing patient-centered care close to home, neighborhood hospitals satisfy this preference.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Medical Care Data Terminal market is projected to experience robust growth, reaching an estimated USD 8,500 million in 2025 and expanding at a Compound Annual Growth Rate (CAGR) of 11.5% through 2033. This upward trajectory is primarily fueled by the escalating demand for efficient patient data management in healthcare settings, driven by the increasing adoption of digital health solutions and the critical need for real-time information accessibility. The growing emphasis on improving patient outcomes, streamlining clinical workflows, and enhancing operational efficiency within hospitals, clinics, and nursing centers are significant market drivers. Furthermore, the rising prevalence of chronic diseases necessitates continuous patient monitoring and data collection, which medical care data terminals facilitate. The shift towards value-based care models also plays a crucial role, as these terminals empower healthcare providers to better track patient progress and demonstrate quality of care. The market is characterized by distinct segments, with the handheld type currently dominating due to its portability and versatility in various clinical scenarios. However, the wearable segment is poised for substantial growth, driven by advancements in sensor technology and the increasing preference for continuous, unobtrusive patient monitoring. Key players like Honeywell, Medtronic, and Zebra Technologies are actively investing in research and development to introduce innovative solutions that integrate advanced features such as robust connectivity, enhanced security, and user-friendly interfaces. Despite the promising outlook, potential restraints such as high initial investment costs for some advanced terminals and concerns regarding data security and privacy regulations may pose challenges. Nevertheless, the continuous technological evolution and the persistent drive for digital transformation in healthcare are expected to outweigh these limitations, ensuring sustained market expansion.
Facebook
TwitterIn 2023, Singapore dominated the ranking of the world's health and health systems, followed by Japan and South Korea. The health index score is calculated by evaluating various indicators that assess the health of the population, and access to the services required to sustain good health, including health outcomes, health systems, sickness and risk factors, and mortality rates. The health and health system index score of the top ten countries with the best healthcare system in the world ranged between 82 and 86.9, measured on a scale of zero to 100.
Global Health Security Index  Numerous health and health system indexes have been developed to assess various attributes and aspects of a nation's healthcare system. One such measure is the Global Health Security (GHS) index. This index evaluates the ability of 195 nations to identify, assess, and mitigate biological hazards in addition to political and socioeconomic concerns, the quality of their healthcare systems, and their compliance with international finance and standards. In 2021, the United States was ranked at the top of the GHS index, but due to multiple reasons, the U.S. government failed to effectively manage the COVID-19 pandemic. The GHS Index evaluates capability and identifies preparation gaps; nevertheless, it cannot predict a nation's resource allocation in case of a public health emergency.
Universal Health Coverage Index  Another health index that is used globally by the members of the United Nations (UN) is the universal health care (UHC) service coverage index. The UHC index monitors the country's progress related to the sustainable developmental goal (SDG) number three. The UHC service coverage index tracks 14 indicators related to reproductive, maternal, newborn, and child health, infectious diseases, non-communicable diseases, service capacity, and access to care. The main target of universal health coverage is to ensure that no one is denied access to essential medical services due to financial hardships. In 2021, the UHC index scores ranged from as low as 21 to a high score of 91 across 194 countries.