High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.
A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This image service contains high resolution satellite imagery for selected regions throughout the Yukon. Imagery is 1m pixel resolution, or better. Imagery was supplied by the Government of Yukon, and the Canadian Department of National Defense. All the imagery in this service is licensed. If you have any questions about Yukon government satellite imagery, please contact Geomatics.Help@gov.yk.can. This service is managed by Geomatics Yukon.
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
This dataset provides a seamless cloud-free 10m resolution satellite imagery layer of the New Zealand mainland and offshore islands.
The imagery was captured by the European Space Agency Sentinel-2 satellites between September 2023 - April 2024.
Data comprises: • 450 ortho-rectified RGB GeoTIFF images in NZTM projection, tiled into the LINZ Standard 1:50000 tile layout. • Satellite sensors: ESA Sentinel-2A and Sentinel-2B • Acquisition dates: September 2023 - April 2024 • Spectral resolution: R, G, B • Spatial resolution: 10 meters • Radiometric resolution: 8-bits (downsampled from 12-bits)
This is a visual product only. The data has been downsampled from 12-bits to 8-bits, and the original values of the images have been modified for visualisation purposes.
If you require the 12-bit imagery (R, G, B, NIR bands), send your request to imagery@linz.govt.nz
Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public.
Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications.
The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet.
The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions.
The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.
What is this dataset?
Nearly 10,000 km² of free high-resolution and matched low-resolution satellite imagery of unique locations which ensure stratified representation of all types of land-use across the world: from agriculture to ice caps, from forests to multiple urbanization densities.
Those locations are also enriched with typically under-represented locations in ML datasets: sites of humanitarian interest, illegal mining sites, and settlements of persons at risk.
Each high-resolution image (1.5 m/pixel) comes with multiple temporally-matched low-resolution images from the freely accessible lower-resolution Sentinel-2 satellites (10 m/pixel).
We accompany this dataset with a paper, datasheet for datasets and an open-source Python package to: rebuild or extend the WorldStrat dataset, train and infer baseline algorithms, and learn with abundant tutorials, all compatible with the popular EO-learn toolbox.
Why make this?
We hope to foster broad-spectrum applications of ML to satellite imagery, and possibly develop the same power of analysis allowed by costly private high-resolution imagery from free public low-resolution Sentinel2 imagery. We illustrate this specific point by training and releasing several highly compute-efficient baselines on the task of Multi-Frame Super-Resolution.
Licences
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An aerial imagery basemap of New Zealand in Web Mercator (WGS 1984) using the latest quality data from Land Information New Zealand.Add the map service directly to your ArcGIS Online map, or copy the Web Map Tile Service (WMTS) URL below for use in the desktop.This basemap is also available in NZTM from: https://linz.maps.arcgis.com/home/item.html?id=39cf07ebf8a2413696d8fd4d80570b84 The LINZ Aerial Imagery Basemap details New Zealand in high resolution - from a nationwide view all the way down to individual buildings.This basemap combines the latest high-resolution aerial imagery down to 5cm in urban areas and 10m satellite imagery to provide full coverage of mainland New Zealand, Chathams and other offshore islands.LINZ Basemaps are powered by data from the LINZ Data Service and other authoritative open data sources, providing you with a basemap that is free to use under an open licence.A XYZ tile API (Web Mercator only) is also available for use in web and mobile applications.See more information or provide your feedback at https://basemaps.linz.govt.nz/.For attribution requirements and data sources see: https://www.linz.govt.nz/data/linz-data/linz-basemaps/data-attribution.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The satellite image of Canada is a composite of several individual satellite images form the Advanced Very High Resolution Radiometre (AVHRR) sensor on board various NOAA Satellites. The colours reflect differences in the density of vegetation cover: bright green for dense vegetation in humid southern regions; yellow for semi-arid and for mountainous regions; brown for the north where vegetation cover is very sparse; and white for snow and ice. An inset map shows a satellite image mosaic of North America with 35 land cover classes, based on data from the SPOT satellite VGT (vegetation) sensor.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
The Ontario Imagery Web Map Service (OIWMS) is an open data service available to everyone free of charge. It provides instant online access to the most recent, highest quality, province wide imagery. GEOspatial Ontario (GEO) makes this data available as an Open Geospatial Consortium (OGC) compliant web map service or as an ArcGIS map service. Imagery was compiled from many different acquisitions which are detailed in the Ontario Imagery Web Map Service Metadata Guide linked below. Instructions on how to use the service can also be found in the Imagery User Guide linked below.Note: This map displays the Ontario Imagery Web Map Service Source, a companion ArcGIS web map service to the Ontario Imagery Web Map Service. It provides an overlay that can be used to identify acquisition relevant information such as sensor source and acquisition date. OIWMS contains several hierarchical layers of imagery, with coarser less detailed imagery that draws at broad scales, such as a province wide zooms, and finer more detailed imagery that draws when zoomed in, such as city-wide zooms. The attributes associated with this data describes at what scales (based on a computer screen) the specific imagery datasets are visible.Available ProductsOntario Imagery OCG Web Map Service – public linkOntario Imagery ArcGIS Map Service – public linkOntario Imagery Web Map Service Source – public linkOntario Imagery ArcGIS Map Service – OPS internal linkOntario Imagery Web Map Service Source – OPS internal linkAdditional DocumentationOntario Imagery Web Map Service Metadata Guide (PDF)Imagery User Guide (Word)StatusCompleted: Production of the data has been completedMaintenance and Update FrequencyAnnually: Data is updated every yearContactOntario Ministry of Natural Resources, Geospatial Ontario, imagery@ontario.ca
QuickBird high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section.
In particular, QuickBird offers archive panchromatic products up to 0.60 m GSD resolution and 4-Bands Multispectral products up to 2.4 m GSD resolution.
Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard(2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12,000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm
4-Bands being an option from:
4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1) Natural Colour / Coloured Infrared (3-Band pan-sharpened) Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique intelligently increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well reconstructed details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method:
The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff:
The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif
.
Source datasets:
Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT
This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
This is the high resolution imagery used to create the map of Mer.
World_AIMS_Marine-satellite-imagery
The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
Change Log:
2025-05-12: Eric Lawrey
Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.
2025-02-04: Eric Lawrey
Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.
2023-11-22: Eric Lawrey
Added the data and maps for close up of Mer.
- 01-data/TS_DNRM_Mer-aerial-imagery/
- preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
- exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
2023-03-02: Eric Lawrey
Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf
WorldView-2 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. In particular, WorldView-2 offers archive and tasking panchromatic products up to 0.46 m GSD resolution, and 4-Bands/8-Bands Multispectral products up to 1.84 m GSD resolution. Band Combination Data Processing Level Resolution Panchromatic and 4-bands Standard (2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm 8-bands Standard(2A)/View Ready Standard (OR2A) 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map-Ready (Ortho) 1:12.000 Orthorectified 30 cm, 40 cm, 50/60 cm 4-Bands being an optional from: 4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1). 8-Bands being an optional from: 8-Band Multispectral (COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) 8-Band Bundle (PAN, COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2). Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels, improves the visual clarity and allows to obtain an aesthetically refined imagery with precise edges and well reconstructed details. As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Nordics satellite imagery services market is projected to grow from $0.22 million in 2025 to $0.96 million by 2033, exhibiting a CAGR of 13.62% during the forecast period. The increasing adoption of satellite imagery for various applications, such as geospatial data acquisition and mapping, natural resource management, and surveillance and security, is driving the market growth. Moreover, the expanding construction and transportation & logistics sectors in the region are further boosting the demand for satellite imagery services. Key trends shaping the Nordics satellite imagery services market include:
Growing adoption of cloud-based platforms and services for satellite imagery processing and analysis: This trend is enabling end-users to access satellite imagery data and services without the need for significant upfront investments in infrastructure. Increasing availability of high-resolution satellite imagery: The launch of new satellites and the development of new image processing technologies are making it possible to obtain high-resolution satellite imagery, which is essential for a variety of applications, such as mapping and land use planning. Emergence of new applications for satellite imagery: Satellite imagery is increasingly being used for a variety of new applications, such as environmental monitoring, disaster management, and precision agriculture. These new applications are creating new opportunities for growth in the Nordics satellite imagery services market. Recent developments include: May 2023 - Business Finland granted EUR 30 million (USD 32.75 million) loan funding for ICEYE's product development project based on innovative new sensor and space technology that will provide real-time and reliable information to support decision-making worldwide. The project aims to create a unique information and software platform, design and develop technology for next-generation satellites, and apply the high-accuracy information from satellites globally for natural catastrophe analysis, modeling, and decision-making., March 2023 - Norway's International Climate and Forest Initiative (NICFI) announced that NICFI's satellite data program is extended until September 2023. Norway's International Climate and Forest Initiative (NICFI) grant free access to high-resolution satellite imagery of the tropics to anyone, anywhere, to monitor tropical deforestation. Through Norway's International Climate & Forests Initiative, users can access the planet's high-resolution, analysis-ready satellite images of the world's tropics to help reduce and combat climate change and reverse the loss of tropical forests.. Key drivers for this market are: Increasing Demand among Various End-user Industries, notablly in Forestry Sector, Adoption of Big Data and Imagery Analytics. Potential restraints include: High Cost of Satellite Imaging Data Acquisition and Processing. Notable trends are: Forestry and Agriculture is Analyzed to Hold Significant Market Share.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
SENTINEL-2 is a wide-swath, high-resolution, multi-spectral imaging mission, supporting Copernicus Land Monitoring studies, including the monitoring of vegetation, soil and water cover, as well as observation of inland waterways and coastal areas.
The SENTINEL-2 Multispectral Instrument (MSI) samples 13 spectral bands: four bands at 10 metres, six bands at 20 metres and three bands at 60 metres spatial resolution.
The acquired data, mission coverage and high revisit frequency provides for the generation of geoinformation at local, regional, national and international scales. The data is designed to be modified and adapted by users interested in thematic areas such as: • spatial planning • agro-environmental monitoring • water monitoring • forest and vegetation monitoring • land carbon, natural resource monitoring • global crop monitoring
Wayback is a digital archive, providing users with access to the different versions of World Imagery created over time. Each layer in the archive represents a snapshot of the entire World Imagery map, as it existed on the date it was published. This Wayback layer is the February 24, 2022 version of World Imagery. See World Imagery (Wayback 2022-02-24) Metadata for detailed information about each image source in this layer.World Imagery provides one meter or better satellite and aerial imagery for much of the world, and lower resolution satellite imagery worldwide. As World Imagery is updated with more current imagery, new versions of the map are published. When and where updates occur, the previous imagery is replaced and is no longer visible. For many use cases, the new imagery is more desirable and typically preferred. Other times, however, the previous imagery may support use cases that the new imagery does not. In these cases, a user may need to access a previous version of World Imagery.Wayback currently provides access to all published versions of World Imagery, dating back to February 20, 2014. There is an ArcGIS Online item for every version which can be viewed in the Wayback Imagery group.
https://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdfhttps://earth.esa.int/eogateway/documents/20142/1560778/ESA-Third-Party-Missions-Terms-and-Conditions.pdf
WorldView-3 high resolution optical products are available as part of the Maxar Standard Satellite Imagery products from the QuickBird, WorldView-1/-2/-3/-4, and GeoEye-1 satellites. All details about the data provision, data access conditions and quota assignment procedure are described into the Terms of Applicability available in Resources section. In particular, WorldView-3 offers archive and tasking panchromatic products up to 0.31m GSD resolution, 4-Bands/8-Bands products up to 1.24 m GSD resolution, and SWIR products up to 3.70 m GSD resolution. Band Combination Data Processing Level Resolution High Res Optical: Panchromatic and 4-bands Standard(2A)/View Ready Standard (OR2A) 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map Ready (Ortho) 1:12.000 Orthorectified 15 cm HD, 30 cm HD, 30 cm, 40 cm, 50/60 cm High Res Optical: 8-bands Standard(2A)/View Ready Standard (OR2A) 30 cm, 40 cm, 50/60 cm View Ready Stereo 30 cm, 40 cm, 50/60 cm Map Ready (Ortho) 1:12.000 Orthorectified 30 cm, 40 cm, 50/60 cm High Res Optical: SWIR Standard(2A)/View Ready Standard (OR2A) 3.7 m or 7.5 m (depending on the collection date) Map Ready (Ortho) 1:12.000 Orthorectified 4-Bands being an optional from: 4-Band Multispectral (BLUE, GREEN, RED, NIR1) 4-Band Pan-sharpened (BLUE, GREEN, RED, NIR1) 4-Band Bundle (PAN, BLUE, GREEN, RED, NIR1) 3-Bands Natural Colour (pan-sharpened BLUE, GREEN, RED) 3-Band Colored Infrared (pan-sharpened GREEN, RED, NIR1) 8-Bands being an optional from: 8-Band Multispectral (COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) 8-Band Bundle (PAN, COASTAL, BLUE, GREEN, YELLOW, RED, RED EDGE, NIR1, NIR2) Native 30 cm and 50/60 cm resolution products are processed with MAXAR HD Technology to generate respectively the 15 cm HD and 30 cm HD products: the initial special resolution (GSD) is unchanged but the HD technique increases the number of pixels and improves the visual clarity achieving aesthetically refined imagery with precise edges and well reconstructed details. As per ESA policy, very high-resolution imagery of conflict areas cannot be provided.
Ground-based readings of temperature and rainfall, satellite imagery, aerial photographs, ground verification data and Digital Elevation Model (DEM) were used in this study. Ground-based meteorological information was obtained from Bangladesh Meteorological Department (BMD) for the period 1977 to 2015 and was used to determine the trends of rainfall and temperature in this thesis. Satellite images obtained from the US Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) website (www.glovis.usgs.gov) in four time periods were analysed to assess the dynamics of mangrove population at species level. Remote sensing techniques, as a solution to lack of spatial data at a relevant scale and difficulty in accessing the mangroves for field survey and also as an alternative to the traditional methods were used in monitoring of the changes in mangrove species composition, . To identify mangrove forests, a number of satellite sensors have been used, including Landsat TM/ETM/OLI, SPOT, CBERS, SIR, ASTER, and IKONOS and Quick Bird. The use of conventional medium-resolution remote sensor data (e.g., Landsat TM, ASTER, SPOT) in the identification of different mangrove species remains a challenging task. In many developing countries, the high cost of acquiring high- resolution satellite imagery excludes its routine use. The free availability of archived images enables the development of useful techniques in its use and therefor Landsat imagery were used in this study for mangrove species classification. Satellite imagery used in this study includes: Landsat Multispectral Scanner (MSS) of 57 m resolution acquired on 1st February 1977, Landsat Thematic Mapper (TM) of 28.5 m resolution acquired on 5th February 1989, Landsat Enhanced Thematic Mapper (ETM+) of 28.5 m resolution acquired on 28th February 2000 and Landsat Operational Land Imager (OLI) of 30 m resolution acquired on 4th February 2015. To study tidal channel dynamics of the study area, aerial photographs from 1974 and 2011, and a satellite image from 2017 were used. Satellite images from 1974 with good spatial resolution of the area were not available, and therefore aerial photographs of comparatively high and fine resolution were considered adequate to obtain information on tidal channel dynamics. Although high-resolution satellite imagery was available for 2011, aerial photographs were used for this study due to their effectiveness in terms of cost and also ease of comparison with the 1974 photographs. The aerial photographs were sourced from the Survey of Bangladesh (SOB). The Sentinel-2 satellite image from 2017 was downloaded from the European Space Agency (ESA) website (https://scihub.copernicus.eu/). In this research, elevation data acts as the main parameter in the determination of the sea level rise (SLR) impacts on the spatial distribution of the future mangrove species of the Bangladesh Sundarbans. High resolution elevation data is essential for this kind of research where every centimeter counts due to the low-lying characteristics of the study area. The high resolution (less than 1m vertical error) DEM data used in this study was obtained from Water Resources Planning Organization (WRPO), Bangladesh. The elevation information used to construct the DEM was originally collected by a Finnish consulting firm known as FINNMAP in 1991 for the Bangladesh government.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
SEPAL (https://sepal.io/) is a free and open source cloud computing platform for geo-spatial data access and processing. It empowers users to quickly process large amounts of data on their computer or mobile device. Users can create custom analysis ready data using freely available satellite imagery, generate and improve land use maps, analyze time series, run change detection and perform accuracy assessment and area estimation, among many other functionalities in the platform. Data can be created and analyzed for any place on Earth using SEPAL.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/63a3efa0-08ab-4ad6-9d4a-96af7b6a99ec/download/cambodia_mosaic_2020.png" alt="alt text" title="Figure 1: Best pixel mosaic of Landsat 8 data for 2020 over Cambodia">
SEPAL reaches over 5000 users in 180 countries for the creation of custom data products from freely available satellite data. SEPAL was developed as a part of the Open Foris suite, a set of free and open source software platforms and tools that facilitate flexible and efficient data collection, analysis and reporting. SEPAL combines and integrates modern geospatial data infrastructures and supercomputing power available through Google Earth Engine and Amazon Web Services with powerful open-source data processing software, such as R, ORFEO, GDAL, Python and Jupiter Notebooks. Users can easily access the archive of satellite imagery from NASA, the European Space Agency (ESA) as well as high spatial and temporal resolution data from Planet Labs and turn such images into data that can be used for reporting and better decision making.
National Forest Monitoring Systems in many countries have been strengthened by SEPAL, which provides technical government staff with computing resources and cutting edge technology to accurately map and monitor their forests. The platform was originally developed for monitoring forest carbon stock and stock changes for reducing emissions from deforestation and forest degradation (REDD+). The application of the tools on the platform now reach far beyond forest monitoring by providing different stakeholders access to cloud based image processing tools, remote sensing and machine learning for any application. Presently, users work on SEPAL for various applications related to land monitoring, land cover/use, land productivity, ecological zoning, ecosystem restoration monitoring, forest monitoring, near real time alerts for forest disturbances and fire, flood mapping, mapping impact of disasters, peatland rewetting status, and many others.
The Hand-in-Hand initiative enables countries that generate data through SEPAL to disseminate their data widely through the platform and to combine their data with the numerous other datasets available through Hand-in-Hand.
https://data.apps.fao.org/catalog/dataset/9c4d7c45-7620-44c4-b653-fbe13eb34b65/resource/868e59da-47b9-4736-93a9-f8d83f5731aa/download/probability_classification_over_zambia.png" alt="alt text" title="Figure 2: Image classification module for land monitoring and mapping. Probability classification over Zambia">
The cost of acquiring a satellite data was highest for the images from the GeoEye-1 satellite at 25 U.S. dollars per square kilometer of the image. Most of the satellite data have a minimum order quantities based on the company and the cost depends mostly on the spatial resolution of the satellite image.
Most of the satellites are commercially owned and provide users with data as an end product based on the requirement. Processing smaller patches of the raw images obtained from a satellite to an end product are not profitable. Hence, there is a minimum order limit of 25 to 50 square kilometers based on the requested product.
Cloud-free Landsat satellite imagery mosaics of the islands of the main 8 Hawaiian Islands (Hawaii, Maui, Kahoolawe, Lanai, Molokai, Oahu, Kauai and Niihau). Landsat 7 ETM (enhanced thematic mapper) is a polar orbiting 8 band multispectral satellite-borne sensor. The ETM+ instrument provides image data from eight spectral bands. The spatial resolution is 30 meters for the visible and near-infra...
High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.
A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.