The top-ranked university in the United States in 2024 according to Forbes was Princeton University in New Jersey. Students at Princeton graduate with an average debt of 7,559 U.S. dollars, but have a median 10-year salary of 189,400 U.S. dollars. The Forbes rankings are based on several categories, including alumni salary, student debt, graduation rate, return on investment, retention rate, and academic success.
Based on the academic reputation scores received on the Quacquarelli Symonds (QS) World University Rankings 2026, the Universidade de São Paulo (USP) ranked first in Brazil, obtaining a score of **** points for academic reputation. This university also ranked second among leading universities in Latin America in 2025. The majority of institutions featured in Brazil's rank are public universities.
The Times Higher Education-World-University-Rankings is a ranking of the world's top universities published annually, universities are evaluated on six different metrics. - Teaching - International - Research - Citations - Income
As of the academic year 2024/25, the Ambrose Alli University in Nigeria had the highest number of registered students in terms of full-time equivalents worldwide, reaching 536,277. The Tribhuvan University in Nepal and the Payame Noor University in Iran, which followed on the places behind, had approximately 484,000 and 458,000 registered students, respectively. A high number of the universities with the highest number of students in the world are located in Egypt.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays ranking by university using the aggregation sum in New York. The data is about universities.
The highest-ranked Italian university in 2025 according to Times Higher Education is the University of Bologna with an overall score of 62.1, followed by the Scuola Normale Superiore of Pisa and La Sapienza University of Rome. The University of Bologna is the oldest continuously operating university in the world, as it was founded in 1088 CE. Of the top-15 universities in the ranking, eleven are public. Instead, Humanitas University, San Raffaele University, the Catholic University of Milan, and the Free University of Bolzano are private institutions.
This statistic shows the overall results of a survey asking recruiters to list the best universities in the United States with regards to the quality of the graduates in 2010. In-state and out-of-state tuition fees are also shown for each university. The university rated first by recruiters in 2010 was Pennsylvania State University which has an out-of-state tuition fee of 27,114 U.S. dollars.
The interview data was gathered for a project that investigated the practices of instructors who use quantitative data to teach undergraduate courses within the Social Sciences. The study was undertaken by employees of the University of California, Santa Barbara (UCSB) Library, who participated in this research project with 19 other colleges and universities across the U.S. under the direction of Ithaka S+R. Ithaka S+R is a New York-based research organization, which, among other goals, seeks to develop strategies, services, and products to meet evolving academic trends to support faculty and students.
The field of Social Sciences has been notoriously known for valuing the contextual component of data and increasingly entertaining more quantitative and computational approaches to research in response to the prevalence of data literacy skills needed to navigate both personal and professional contexts. Thus, this study becomes particularly timely to identify current instructors’ practi..., The project followed a qualitative and exploratory approach to understand current practices of faculty teaching with data. The study was IRB approved and was exempt by the UCSB’s Office of Research in July 2020 (Protocol 1-20-0491).Â
The identification and recruitment of potential participants took into account the selection criteria pre-established by Ithaka S+R: a) instructors of courses within the Social Sciences, considering the field as broadly defined, and making the best judgment in cases the discipline intersects with other fields; b) instructors who teach undergraduate courses or courses where most of the students are at the undergraduate level; c) instructors of any rank, including adjuncts and graduate students; as long as they were listed as instructors of record of the selected courses; d) instructors who teach courses were students engage with quantitative/computational data.Â
The sampling process followed a combination of strategies to more easily identify instructo..., The data folder contains 10Â pdf files with de-identified transcriptions of the interviews and the pdf files with the recruitment email and the interview guide.Â
Success.ai’s Education Industry Data provides access to comprehensive profiles of global professionals in the education sector. Sourced from over 700 million verified LinkedIn profiles, this dataset includes actionable insights and verified contact details for teachers, school administrators, university leaders, and other decision-makers. Whether your goal is to collaborate with educational institutions, market innovative solutions, or recruit top talent, Success.ai ensures your efforts are supported by accurate, enriched, and continuously updated data.
Why Choose Success.ai’s Education Industry Data? 1. Comprehensive Professional Profiles Access verified LinkedIn profiles of teachers, school principals, university administrators, curriculum developers, and education consultants. AI-validated profiles ensure 99% accuracy, reducing bounce rates and enabling effective communication. 2. Global Coverage Across Education Sectors Includes professionals from public schools, private institutions, higher education, and educational NGOs. Covers markets across North America, Europe, APAC, South America, and Africa for a truly global reach. 3. Continuously Updated Dataset Real-time updates reflect changes in roles, organizations, and industry trends, ensuring your outreach remains relevant and effective. 4. Tailored for Educational Insights Enriched profiles include work histories, academic expertise, subject specializations, and leadership roles for a deeper understanding of the education sector.
Data Highlights: 700M+ Verified LinkedIn Profiles: Access a global network of education professionals. 100M+ Work Emails: Direct communication with teachers, administrators, and decision-makers. Enriched Professional Histories: Gain insights into career trajectories, institutional affiliations, and areas of expertise. Industry-Specific Segmentation: Target professionals in K-12 education, higher education, vocational training, and educational technology.
Key Features of the Dataset: 1. Education Sector Profiles Identify and connect with teachers, professors, academic deans, school counselors, and education technologists. Engage with individuals shaping curricula, institutional policies, and student success initiatives. 2. Detailed Institutional Insights Leverage data on school sizes, student demographics, geographic locations, and areas of focus. Tailor outreach to align with institutional goals and challenges. 3. Advanced Filters for Precision Targeting Refine searches by region, subject specialty, institution type, or leadership role. Customize campaigns to address specific needs, such as professional development or technology adoption. 4. AI-Driven Enrichment Enhanced datasets include actionable details for personalized messaging and targeted engagement. Highlight educational milestones, professional certifications, and key achievements.
Strategic Use Cases: 1. Product Marketing and Outreach Promote educational technology, learning platforms, or training resources to teachers and administrators. Engage with decision-makers driving procurement and curriculum development. 2. Collaboration and Partnerships Identify institutions for collaborations on research, workshops, or pilot programs. Build relationships with educators and administrators passionate about innovative teaching methods. 3. Talent Acquisition and Recruitment Target HR professionals and academic leaders seeking faculty, administrative staff, or educational consultants. Support hiring efforts for institutions looking to attract top talent in the education sector. 4. Market Research and Strategy Analyze trends in education systems, curriculum development, and technology integration to inform business decisions. Use insights to adapt products and services to evolving educational needs.
Why Choose Success.ai? 1. Best Price Guarantee Access industry-leading Education Industry Data at unmatched pricing for cost-effective campaigns and strategies. 2. Seamless Integration Easily integrate verified data into CRMs, recruitment platforms, or marketing systems using downloadable formats or APIs. 3. AI-Validated Accuracy Depend on 99% accurate data to reduce wasted outreach and maximize engagement rates. 4. Customizable Solutions Tailor datasets to specific educational fields, geographic regions, or institutional types to meet your objectives.
Strategic APIs for Enhanced Campaigns: 1. Data Enrichment API Enrich existing records with verified education professional profiles to enhance engagement and targeting. 2. Lead Generation API Automate lead generation for a consistent pipeline of qualified professionals in the education sector. Success.ai’s Education Industry Data enables you to connect with educators, administrators, and decision-makers transforming global...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays universities by universities using the aggregation count in Stanford. The data is about universities.
Quick Stats is the National Agricultural Statistics Service's (NASS) online, self-service tool to access complete results from the 1997, 2002, 2007, and 2012 Censuses of Agriculture as well as the best source of NASS survey published estimates. The census collects data on all commodities produced on U.S. farms and ranches, as well as detailed information on expenses, income, and operator characteristics. The surveys that NASS conducts collect information on virtually every facet of U.S. agricultural production.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of University Park by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of University Park across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 57.29% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for University Park Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of University Heights by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of University Heights across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.41% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for University Heights Population by Race & Ethnicity. You can refer the same here
The Taking Part Survey has run since 2005 and is the key evidence source for DCMS. It is a continuous face to face household survey of adults aged 16 and over in England and children aged 5 to 15 years old.
The Taking Part Survey provides reliable national estimates of engagement with the arts, heritage, museums and libraries. It carries the National Statistics badge, meaning that it meets the highest standards of statistical quality.
30 August 2018
April 2017 to March 2018
National and Regional level data for England
A series of “Taking Part, Focus on…” reports will be published in autumn 2018. Each ‘short story’ in this series will look at a specific topic in more detail, providing more in-depth analysis of the 2017/18 Taking Part data.
The Taking Part Survey provides reliable national estimates of adult engagement with the arts, heritage, museums, archives and libraries, and of barriers to engagement with these sectors. The latest data cover the period April 2017 to March 2018.
The report also looks at some of the other statistics from the Taking Part Survey, including digital engagement with culture, volunteering and charitable giving, First World War Commemorations and TV.
These spreadsheets contain the data and sample sizes to support the material in this release.
The previous adult biannual Taking Part release was published on 6 December 2017 and the previous adult Taking Part annual release was published on 28th September 2017. Both releases also provide spreadsheets containing the data and sample sizes for each sector included in the survey. A series of short story reports was published on 27 April 2018.
The document above contains a list of ministers and officials who have received privileged early access to this release of Taking Part data. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours. Details on the pre-release access arrangements for this dataset are available in the accompanying material.
This release is published in accordance with the Code of Practice for Statistics (2018), as produced by the UK Statistics Authority. The Authority has the overall objective of promoting and safeguarding the production and publication of official statistics that serve the public good. It monitors and reports on all official statistics, and promotes good practice in this area.
The responsible statistician for this release is Alex Björkegren. For enquiries on this release, contact Alex Björkegren on 020 7211 6776 or Maria Willoughby on 020 7211 6771.
For any further queries contact them or the Taking Part team at takingpart@culture.gov.uk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of University City by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for University City. The dataset can be utilized to understand the population distribution of University City by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in University City. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for University City.
Key observations
Largest age group (population): Male # 30-34 years (1,880) | Female # 20-24 years (2,355). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for University City Population by Gender. You can refer the same here
The SCA’s comprehensive capital planning process includes developing and analyzing quality data, creating and updating the Department of Education’s Five-Year Capital Plans, and monitoring projects through completion. The SCA prioritizes capital projects to best meet the capacity and building improvements needs throughout the City. Additionally, the SCA assures that the Capital Plan aligns with New York State and City Department of Education mandates, academic initiatives, and budgetary resources. This is one of the most current published reports.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
John Ioannidis and co-authors [1] created a publicly available database of top-cited scientists in the world. This database, intended to address the misuse of citation metrics, has generated a lot of interest among the scientific community, institutions, and media. Many institutions used this as a yardstick to assess the quality of researchers. At the same time, some people look at this list with skepticism citing problems with the methodology used. Two separate databases are created based on career-long and, single recent year impact. This database is created using Scopus data from Elsevier[1-3]. The Scientists included in this database are classified into 22 scientific fields and 174 sub-fields. The parameters considered for this analysis are total citations from 1996 to 2022 (nc9622), h index in 2022 (h22), c-score, and world rank based on c-score (Rank ns). Citations without self-cites are considered in all cases (indicated as ns). In the case of a single-year case, citations during 2022 (nc2222) instead of Nc9622 are considered.
To evaluate the robustness of c-score-based ranking, I have done a detailed analysis of the matrix parameters of the last 25 years (1998-2022) of Nobel laureates of Physics, chemistry, and medicine, and compared them with the top 100 rank holders in the list. The latest career-long and single-year-based databases (2022) were used for this analysis. The details of the analysis are presented below:
Though the article says the selection is based on the top 100,000 scientists by c-score (with and without self-citations) or a percentile rank of 2% or above in the sub-field, the actual career-based ranking list has 204644 names[1]. The single-year database contains 210199 names. So, the list published contains ~ the top 4% of scientists. In the career-based rank list, for the person with the lowest rank of 4809825, the nc9622, h22, and c-score were 41, 3, and 1.3632, respectively. Whereas for the person with the No.1 rank in the list, the nc9622, h22, and c-score were 345061, 264, and 5.5927, respectively. Three people on the list had less than 100 citations during 96-2022, 1155 people had an h22 less than 10, and 6 people had a C-score less than 2.
In the single year-based rank list, for the person with the lowest rank (6547764), the nc2222, h22, and c-score were 1, 1, and 0. 6, respectively. Whereas for the person with the No.1 rank, the nc9622, h22, and c-score were 34582, 68, and 5.3368, respectively. 4463 people on the list had less than 100 citations in 2022, 71512 people had an h22 less than 10, and 313 people had a C-score less than 2. The entry of many authors having single digit H index and a very meager total number of citations indicates serious shortcomings of the c-score-based ranking methodology. These results indicate shortcomings in the ranking methodology.
Multienvironment trials (METs) enable the evaluation of the same genotypes under a v ariety of environments and management conditions. We present META (Multi Environment Trial Analysis), a suite of 31 SAS programs that analyze METs with complete or incomplete block designs, with or without adjustment by a covariate. The entire program is run through a graphical user interface. The program can produce boxplots or histograms for all traits, as well as univariate statistics. It also calculates best linear unbiased estimators (BLUEs) and best linear unbiased predictors for the main response variable and BLUEs for all other traits. For all traits, it calculates variance components by restricted maximum likelihood, least significant difference, coefficient of variation, and broad-sense heritability using PROC MIXED. The program can analyze each location separately, combine the analysis by management conditions, or combine all locations. The flexibility and simplicity of use of this program makes it a valuable tool for analyzing METs in breeding and agronomy. The META program can be used by any researcher who knows only a few fundamental principles of SAS.
New York University had around 27,247 international students studying there in the academic year 2023/24, making it the most popular university for international students in the United States. NYU was followed by Northeastern University with 21,023 international students and Columbia University, which hosted 20,321 international students.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Leadership Development Program (LDP) market has evolved into a pivotal component for organizations striving to cultivate effective leaders equipped to navigate today's complex business landscape. Ranging from tailored training sessions to comprehensive mentorship initiatives, these programs are designed to enhan
The top-ranked university in the United States in 2024 according to Forbes was Princeton University in New Jersey. Students at Princeton graduate with an average debt of 7,559 U.S. dollars, but have a median 10-year salary of 189,400 U.S. dollars. The Forbes rankings are based on several categories, including alumni salary, student debt, graduation rate, return on investment, retention rate, and academic success.