This statistic shows a ranking of the best websites specialized in wine sales in 2017. That year, the website "www.wine.com" ranked the first place amongst online sales companies specialized in wine.
As of September 2024, 75 percent of the 100 most visited websites in the United States shared personal data with advertising 3rd parties, even when users opted out. Moreover, 70 percent of them drop advertising 3rd party cookies even when users opt out.
The purpose of this project is to improve the accuracy of statistical software by providing reference datasets with certified computational results that enable the objective evaluation of statistical software. Currently datasets and certified values are provided for assessing the accuracy of software for univariate statistics, linear regression, nonlinear regression, and analysis of variance. The collection includes both generated and 'real-world' data of varying levels of difficulty. Generated datasets are designed to challenge specific computations. These include the classic Wampler datasets for testing linear regression algorithms and the Simon & Lesage datasets for testing analysis of variance algorithms. Real-world data include challenging datasets such as the Longley data for linear regression, and more benign datasets such as the Daniel & Wood data for nonlinear regression. Certified values are 'best-available' solutions. The certification procedure is described in the web pages for each statistical method. Datasets are ordered by level of difficulty (lower, average, and higher). Strictly speaking the level of difficulty of a dataset depends on the algorithm. These levels are merely provided as rough guidance for the user. Producing correct results on all datasets of higher difficulty does not imply that your software will pass all datasets of average or even lower difficulty. Similarly, producing correct results for all datasets in this collection does not imply that your software will do the same for your particular dataset. It will, however, provide some degree of assurance, in the sense that your package provides correct results for datasets known to yield incorrect results for some software. The Statistical Reference Datasets is also supported by the Standard Reference Data Program.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
According to research by Sucuri, 60.04% of websites analyzed contained at least one backdoor, 52.6% of websites contained some form of SEO spam; 95.62% of those websites run on WordPress.
An analysis showed that as of April 2024 only ** percent of small business home pages in the United States provided the users with contact information for the company they represented. Most commonly featured elements were photographs and call-to-action buttons, included on ** percent and ** percent of SME home pages, respectively.
https://electroiq.com/privacy-policyhttps://electroiq.com/privacy-policy
Wix vs Squarespace Statistics: In recent years, Wix and Squarespace have been termed as the two most popular platforms for website creation. They are best for businesses, individuals, and creators. Wix.com Ltd., or simply Wix, is an Israeli software company that provides cloud-based web development services and also offers tools for creating HTML5 websites for desktop and mobile platforms using online drag-and-drop editing.
Squarespace, Inc. is an American website-building and hosting company that provides software as a service for website building and hosting. It allows users to use pre-built website templates and drag-and-drop elements to create and modify webpages. This article includes several information and statistical analysis from different insights, which will guide you in understanding the platforms better and allow you to choose the best option.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Browse the most interesting pieces of data and statistics from around the world of WordPress. Use them whenever you’re working on a new article, blog post, infographic, or whatever else you have in store.
The Easiest Way to Collect Data from the Internet Download anything you see on the internet into spreadsheets within a few clicks using our ready-made web crawlers or a few lines of code using our APIs
We have made it as simple as possible to collect data from websites
Easy to Use Crawlers Amazon Product Details and Pricing Scraper Amazon Product Details and Pricing Scraper Get product information, pricing, FBA, best seller rank, and much more from Amazon.
Google Maps Search Results Google Maps Search Results Get details like place name, phone number, address, website, ratings, and open hours from Google Maps or Google Places search results.
Twitter Scraper Twitter Scraper Get tweets, Twitter handle, content, number of replies, number of retweets, and more. All you need to provide is a URL to a profile, hashtag, or an advance search URL from Twitter.
Amazon Product Reviews and Ratings Amazon Product Reviews and Ratings Get customer reviews for any product on Amazon and get details like product name, brand, reviews and ratings, and more from Amazon.
Google Reviews Scraper Google Reviews Scraper Scrape Google reviews and get details like business or location name, address, review, ratings, and more for business and places.
Walmart Product Details & Pricing Walmart Product Details & Pricing Get the product name, pricing, number of ratings, reviews, product images, URL other product-related data from Walmart.
Amazon Search Results Scraper Amazon Search Results Scraper Get product search rank, pricing, availability, best seller rank, and much more from Amazon.
Amazon Best Sellers Amazon Best Sellers Get the bestseller rank, product name, pricing, number of ratings, rating, product images, and more from any Amazon Bestseller List.
Google Search Scraper Google Search Scraper Scrape Google search results and get details like search rank, paid and organic results, knowledge graph, related search results, and more.
Walmart Product Reviews & Ratings Walmart Product Reviews & Ratings Get customer reviews for any product on Walmart.com and get details like product name, brand, reviews, and ratings.
Scrape Emails and Contact Details Scrape Emails and Contact Details Get emails, addresses, contact numbers, social media links from any website.
Walmart Search Results Scraper Walmart Search Results Scraper Get Product details such as pricing, availability, reviews, ratings, and more from Walmart search results and categories.
Glassdoor Job Listings Glassdoor Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Glassdoor.
Indeed Job Listings Indeed Job Listings Scrape job details such as job title, salary, job description, location, company name, number of reviews, and ratings from Indeed.
LinkedIn Jobs Scraper Premium LinkedIn Jobs Scraper Scrape job listings on LinkedIn and extract job details such as job title, job description, location, company name, number of reviews, and more.
Redfin Scraper Premium Redfin Scraper Scrape real estate listings from Redfin. Extract property details such as address, price, mortgage, redfin estimate, broker name and more.
Yelp Business Details Scraper Yelp Business Details Scraper Scrape business details from Yelp such as phone number, address, website, and more from Yelp search and business details page.
Zillow Scraper Premium Zillow Scraper Scrape real estate listings from Zillow. Extract property details such as address, price, Broker, broker name and more.
Amazon product offers and third party sellers Amazon product offers and third party sellers Get product pricing, delivery details, FBA, seller details, and much more from the Amazon offer listing page.
Realtor Scraper Premium Realtor Scraper Scrape real estate listings from Realtor.com. Extract property details such as Address, Price, Area, Broker and more.
Target Product Details & Pricing Target Product Details & Pricing Get product details from search results and category pages such as pricing, availability, rating, reviews, and 20+ data points from Target.
Trulia Scraper Premium Trulia Scraper Scrape real estate listings from Trulia. Extract property details such as Address, Price, Area, Mortgage and more.
Amazon Customer FAQs Amazon Customer FAQs Get FAQs for any product on Amazon and get details like the question, answer, answered user name, and more.
Yellow Pages Scraper Yellow Pages Scraper Get details like business name, phone number, address, website, ratings, and more from Yellow Pages search results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total number of WordCamps to ever take place is growing rapidly – currently at more than 1091 organized in total all over the globe, held in 373 cities, 65 countries, on 6 continents.
In March 2024, the video platform YouTube reported around 32.5 billion visits from global users. Meta-owned Facebook.com reported around 16.1 billion visits from global users, as Instagram.com and Twitter.com followed, each with 7 billion and 6.1 billion visits from users worldwide during the examined month. Wikipedia.org, which hosts users-generated encyclopedic entries, recorded around 4.4 billion visits, while news aggregator and community platform Reddit.com saw approximately 2.2 billion visits during the examined period.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The dataset has been collected in the frame of the Prac1 of the subject Tipology and Data Life Cycle of the Master's Degree in Data Science of the Universitat Oberta de Catalunya (UOC).
The dataset contains 25 variables and 52478 records corresponding to books on the GoodReads Best Books Ever list (the larges list on the site).
Original code used to retrieve the dataset can be found on github repository: github.com/scostap/goodreads_bbe_dataset
The data was retrieved in two sets, the first 30000 books and then the remainig 22478. Dates were not parsed and reformated on the second chunk so publishDate and firstPublishDate are representet in a mm/dd/yyyy format for the first 30000 records and Month Day Year for the rest.
Book cover images can be optionally downloaded from the url in the 'coverImg' field. Python code for doing so and an example can be found on the github repo.
The 25 fields of the dataset are:
| Attributes | Definition | Completeness |
| ------------- | ------------- | ------------- |
| bookId | Book Identifier as in goodreads.com | 100 |
| title | Book title | 100 |
| series | Series Name | 45 |
| author | Book's Author | 100 |
| rating | Global goodreads rating | 100 |
| description | Book's description | 97 |
| language | Book's language | 93 |
| isbn | Book's ISBN | 92 |
| genres | Book's genres | 91 |
| characters | Main characters | 26 |
| bookFormat | Type of binding | 97 |
| edition | Type of edition (ex. Anniversary Edition) | 9 |
| pages | Number of pages | 96 |
| publisher | Editorial | 93 |
| publishDate | publication date | 98 |
| firstPublishDate | Publication date of first edition | 59 |
| awards | List of awards | 20 |
| numRatings | Number of total ratings | 100 |
| ratingsByStars | Number of ratings by stars | 97 |
| likedPercent | Derived field, percent of ratings over 2 starts (as in GoodReads) | 99 |
| setting | Story setting | 22 |
| coverImg | URL to cover image | 99 |
| bbeScore | Score in Best Books Ever list | 100 |
| bbeVotes | Number of votes in Best Books Ever list | 100 |
| price | Book's price (extracted from Iberlibro) | 73 |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The exponential increase of published data and the diversity of systems require the adoption of good practices to achieve quality indexes that enable discovery, access, and reuse. To identify good practices, an integrative review was used, as well as procedures from the ProKnow-C methodology. After applying the ProKnow-C procedures to the documents retrieved from the Web of Science, Scopus and Library, Information Science & Technology Abstracts databases, an analysis of 31 items was performed. This analysis allowed observing that in the last 20 years the guidelines for publishing open government data had a great impact on the Linked Data model implementation in several domains and currently the FAIR principles and the Data on the Web Best Practices are the most highlighted in the literature. These guidelines presents orientations in relation to various aspects for the publication of data in order to contribute to the optimization of quality, independent of the context in which they are applied. The CARE and FACT principles, on the other hand, although they were not formulated with the same objective as FAIR and the Best Practices, represent great challenges for information and technology scientists regarding ethics, responsibility, confidentiality, impartiality, security, and transparency of data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
59,000+ WordPress plugins are in the official directory, with new ones being added daily.
TagX Web Browsing Clickstream Data: Unveiling Digital Behavior Across North America and EU Unique Insights into Online User Behavior TagX Web Browsing clickstream Data offers an unparalleled window into the digital lives of 1 million users across North America and the European Union. This comprehensive dataset stands out in the market due to its breadth, depth, and stringent compliance with data protection regulations. What Makes Our Data Unique?
Extensive Geographic Coverage: Spanning two major markets, our data provides a holistic view of web browsing patterns in developed economies. Large User Base: With 300K active users, our dataset offers statistically significant insights across various demographics and user segments. GDPR and CCPA Compliance: We prioritize user privacy and data protection, ensuring that our data collection and processing methods adhere to the strictest regulatory standards. Real-time Updates: Our clickstream data is continuously refreshed, providing up-to-the-minute insights into evolving online trends and user behaviors. Granular Data Points: We capture a wide array of metrics, including time spent on websites, click patterns, search queries, and user journey flows.
Data Sourcing: Ethical and Transparent Our web browsing clickstream data is sourced through a network of partnered websites and applications. Users explicitly opt-in to data collection, ensuring transparency and consent. We employ advanced anonymization techniques to protect individual privacy while maintaining the integrity and value of the aggregated data. Key aspects of our data sourcing process include:
Voluntary user participation through clear opt-in mechanisms Regular audits of data collection methods to ensure ongoing compliance Collaboration with privacy experts to implement best practices in data anonymization Continuous monitoring of regulatory landscapes to adapt our processes as needed
Primary Use Cases and Verticals TagX Web Browsing clickstream Data serves a multitude of industries and use cases, including but not limited to:
Digital Marketing and Advertising:
Audience segmentation and targeting Campaign performance optimization Competitor analysis and benchmarking
E-commerce and Retail:
Customer journey mapping Product recommendation enhancements Cart abandonment analysis
Media and Entertainment:
Content consumption trends Audience engagement metrics Cross-platform user behavior analysis
Financial Services:
Risk assessment based on online behavior Fraud detection through anomaly identification Investment trend analysis
Technology and Software:
User experience optimization Feature adoption tracking Competitive intelligence
Market Research and Consulting:
Consumer behavior studies Industry trend analysis Digital transformation strategies
Integration with Broader Data Offering TagX Web Browsing clickstream Data is a cornerstone of our comprehensive digital intelligence suite. It seamlessly integrates with our other data products to provide a 360-degree view of online user behavior:
Social Media Engagement Data: Combine clickstream insights with social media interactions for a holistic understanding of digital footprints. Mobile App Usage Data: Cross-reference web browsing patterns with mobile app usage to map the complete digital journey. Purchase Intent Signals: Enrich clickstream data with purchase intent indicators to power predictive analytics and targeted marketing efforts. Demographic Overlays: Enhance web browsing data with demographic information for more precise audience segmentation and targeting.
By leveraging these complementary datasets, businesses can unlock deeper insights and drive more impactful strategies across their digital initiatives. Data Quality and Scale We pride ourselves on delivering high-quality, reliable data at scale:
Rigorous Data Cleaning: Advanced algorithms filter out bot traffic, VPNs, and other non-human interactions. Regular Quality Checks: Our data science team conducts ongoing audits to ensure data accuracy and consistency. Scalable Infrastructure: Our robust data processing pipeline can handle billions of daily events, ensuring comprehensive coverage. Historical Data Availability: Access up to 24 months of historical data for trend analysis and longitudinal studies. Customizable Data Feeds: Tailor the data delivery to your specific needs, from raw clickstream events to aggregated insights.
Empowering Data-Driven Decision Making In today's digital-first world, understanding online user behavior is crucial for businesses across all sectors. TagX Web Browsing clickstream Data empowers organizations to make informed decisions, optimize their digital strategies, and stay ahead of the competition. Whether you're a marketer looking to refine your targeting, a product manager seeking to enhance user experience, or a researcher exploring digital trends, our cli...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly analytics reports for the Brisbane City Council website
Information regarding the sessions for Brisbane City Council website during the month including search terms used.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There have been 43 major versions of WordPress released since the platform’s inception.
Monthly statistics for the top 1,000 Arlington County Government public webpages.
The CDC Content Syndication site at https://tools.cdc.gov/syndication/ allows you to import content from CDC websites directly into your own website or application. These services are provided free of charge from CDC. The data shown in this table represent the weekly top page views from CDC.gov offered by syndication.
United States agricultural researchers have many options for making their data available online. This dataset aggregates the primary sources of ag-related data and determines where researchers are likely to deposit their agricultural data. These data serve as both a current landscape analysis and also as a baseline for future studies of ag research data. Purpose As sources of agricultural data become more numerous and disparate, and collaboration and open data become more expected if not required, this research provides a landscape inventory of online sources of open agricultural data. An inventory of current agricultural data sharing options will help assess how the Ag Data Commons, a platform for USDA-funded data cataloging and publication, can best support data-intensive and multi-disciplinary research. It will also help agricultural librarians assist their researchers in data management and publication. The goals of this study were to establish where agricultural researchers in the United States-- land grant and USDA researchers, primarily ARS, NRCS, USFS and other agencies -- currently publish their data, including general research data repositories, domain-specific databases, and the top journals compare how much data is in institutional vs. domain-specific vs. federal platforms determine which repositories are recommended by top journals that require or recommend the publication of supporting data ascertain where researchers not affiliated with funding or initiatives possessing a designated open data repository can publish data Approach The National Agricultural Library team focused on Agricultural Research Service (ARS), Natural Resources Conservation Service (NRCS), and United States Forest Service (USFS) style research data, rather than ag economics, statistics, and social sciences data. To find domain-specific, general, institutional, and federal agency repositories and databases that are open to US research submissions and have some amount of ag data, resources including re3data, libguides, and ARS lists were analysed. Primarily environmental or public health databases were not included, but places where ag grantees would publish data were considered. Search methods We first compiled a list of known domain specific USDA / ARS datasets / databases that are represented in the Ag Data Commons, including ARS Image Gallery, ARS Nutrition Databases (sub-components), SoyBase, PeanutBase, National Fungus Collection, i5K Workspace @ NAL, and GRIN. We then searched using search engines such as Bing and Google for non-USDA / federal ag databases, using Boolean variations of “agricultural data” /“ag data” / “scientific data” + NOT + USDA (to filter out the federal / USDA results). Most of these results were domain specific, though some contained a mix of data subjects. We then used search engines such as Bing and Google to find top agricultural university repositories using variations of “agriculture”, “ag data” and “university” to find schools with agriculture programs. Using that list of universities, we searched each university web site to see if their institution had a repository for their unique, independent research data if not apparent in the initial web browser search. We found both ag specific university repositories and general university repositories that housed a portion of agricultural data. Ag specific university repositories are included in the list of domain-specific repositories. Results included Columbia University – International Research Institute for Climate and Society, UC Davis – Cover Crops Database, etc. If a general university repository existed, we determined whether that repository could filter to include only data results after our chosen ag search terms were applied. General university databases that contain ag data included Colorado State University Digital Collections, University of Michigan ICPSR (Inter-university Consortium for Political and Social Research), and University of Minnesota DRUM (Digital Repository of the University of Minnesota). We then split out NCBI (National Center for Biotechnology Information) repositories. Next we searched the internet for open general data repositories using a variety of search engines, and repositories containing a mix of data, journals, books, and other types of records were tested to determine whether that repository could filter for data results after search terms were applied. General subject data repositories include Figshare, Open Science Framework, PANGEA, Protein Data Bank, and Zenodo. Finally, we compared scholarly journal suggestions for data repositories against our list to fill in any missing repositories that might contain agricultural data. Extensive lists of journals were compiled, in which USDA published in 2012 and 2016, combining search results in ARIS, Scopus, and the Forest Service's TreeSearch, plus the USDA web sites Economic Research Service (ERS), National Agricultural Statistics Service (NASS), Natural Resources and Conservation Service (NRCS), Food and Nutrition Service (FNS), Rural Development (RD), and Agricultural Marketing Service (AMS). The top 50 journals' author instructions were consulted to see if they (a) ask or require submitters to provide supplemental data, or (b) require submitters to submit data to open repositories. Data are provided for Journals based on a 2012 and 2016 study of where USDA employees publish their research studies, ranked by number of articles, including 2015/2016 Impact Factor, Author guidelines, Supplemental Data?, Supplemental Data reviewed?, Open Data (Supplemental or in Repository) Required? and Recommended data repositories, as provided in the online author guidelines for each the top 50 journals. Evaluation We ran a series of searches on all resulting general subject databases with the designated search terms. From the results, we noted the total number of datasets in the repository, type of resource searched (datasets, data, images, components, etc.), percentage of the total database that each term comprised, any dataset with a search term that comprised at least 1% and 5% of the total collection, and any search term that returned greater than 100 and greater than 500 results. We compared domain-specific databases and repositories based on parent organization, type of institution, and whether data submissions were dependent on conditions such as funding or affiliation of some kind. Results A summary of the major findings from our data review: Over half of the top 50 ag-related journals from our profile require or encourage open data for their published authors. There are few general repositories that are both large AND contain a significant portion of ag data in their collection. GBIF (Global Biodiversity Information Facility), ICPSR, and ORNL DAAC were among those that had over 500 datasets returned with at least one ag search term and had that result comprise at least 5% of the total collection. Not even one quarter of the domain-specific repositories and datasets reviewed allow open submission by any researcher regardless of funding or affiliation. See included README file for descriptions of each individual data file in this dataset. Resources in this dataset:Resource Title: Journals. File Name: Journals.csvResource Title: Journals - Recommended repositories. File Name: Repos_from_journals.csvResource Title: TDWG presentation. File Name: TDWG_Presentation.pptxResource Title: Domain Specific ag data sources. File Name: domain_specific_ag_databases.csvResource Title: Data Dictionary for Ag Data Repository Inventory. File Name: Ag_Data_Repo_DD.csvResource Title: General repositories containing ag data. File Name: general_repos_1.csvResource Title: README and file inventory. File Name: README_InventoryPublicDBandREepAgData.txt
This statistic shows a ranking of the best websites specialized in wine sales in 2017. That year, the website "www.wine.com" ranked the first place amongst online sales companies specialized in wine.