A dataset comparing features, pricing, and ratings of the top sites to buy website traffic in 2025: Google Ads, Facebook Ads, PropellerAds, and SparkTraffic.
In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the world’s most popular websites for user generated content, solidifying Alphabet’s and Meta’s leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internet’s engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
In March 2024, Google.com was the leading website in the United States. The search platform accounted for over 19 percent of desktop web traffic in the United States, ahead of second-ranked YouTube.com with 10.71 percent.
A dataset comparing features, pricing, and ratings of the top 4 traffic bots in 2025: SparkTraffic (4.5/5), TrafficBot.co (2.5/5), Traffic-Bot.com (3.0/5), and EpicTrafficBot (3.0/5).
In November 2024, search platform Google.com was the top ranking website in Canada, with average monthly traffic of 2.71 billion visits. YouTube ranked second with 1.5 billion visits. Reddit.com ranked third, with total monthly traffic of 301 million visits.
Traffic analytics, rankings, and competitive metrics for similarweb.com as of June 2025
Google.com, youtube.com, and facebook.com were the most visited websites in Ukraine in December 2021. Furthermore, Google's website on the Ukrainian domain, google.com.ua, ranked in the top 10 during that time.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
https://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
amex-travel.top is ranked #1581 in ES with 812.96K Traffic. Categories: . Learn more about website traffic, market share, and more!
https://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
1trk.top is ranked #9510 in JP with 961.32K Traffic. Categories: . Learn more about website traffic, market share, and more!
This dataset was created by DNS_dataset
https://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
1filmy4wep.best is ranked # in US with 0 Traffic. Categories: . Learn more about website traffic, market share, and more!
Top 25 Daily Page Views for the main website of Los Angeles
https://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
m-pays.top is ranked #10406 in KH with 3.94K Traffic. Categories: . Learn more about website traffic, market share, and more!
Traffic analytics, rankings, and competitive metrics for best-hashtags.com as of June 2025
https://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
123mkv.best is ranked # in US with 0 Traffic. Categories: . Learn more about website traffic, market share, and more!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Traffic volumes data across Dublin City from the SCATS traffic management system. The Sydney Coordinated Adaptive Traffic System (SCATS) is an intelligent transportation system used to manage timing of signal phases at traffic signals. SCATS uses sensors at each traffic signal to detect vehicle presence in each lane and pedestrians waiting to cross at the local site. The vehicle sensors are generally inductive loops installed within the road. 3 resources are provided: SCATS Traffic Volumes Data (Monthly) Contained in this report are traffic counts taken from the SCATS traffic detectors located at junctions. The primary function for these traffic detectors is for traffic signal control. Such devices can also count general traffic volumes at defined locations on approach to a junction. These devices are set at specific locations on approaches to the junction but may not be on all approaches to a junction. As there are multiple junctions on any one route, it could be expected that a vehicle would be counted multiple times as it progress along the route. Thus the traffic volume counts here are best used to represent trends in vehicle movement by selecting a specific junction on the route which best represents the overall traffic flows. Information provided: End Time: time that one hour count period finishes. Region: location of the detector site (e.g. North City, West City, etc). Site: this can be matched with the SCATS Sites file to show location Detector: the detectors/ sensors at each site are numbered Sum volume: total traffic volumes in preceding hour Avg volume: average traffic volumes per 5 minute interval in preceding hour All Dates Traffic Volumes Data This file contains daily totals of traffic flow at each site location. SCATS Site Location Data Contained in this report, the location data for the SCATS sites is provided. The meta data provided includes the following; Site id – This is a unique identifier for each junction on SCATS Site description( CAP) – Descriptive location of the junction containing street name(s) intersecting streets Site description (lower) - – Descriptive location of the junction containing street name(s) intersecting streets Region – The area of the city, adjoining local authority, region that the site is located LAT/LONG – Coordinates Disclaimer: the location files are regularly updated to represent the locations of SCATS sites under the control of Dublin City Council. However site accuracy is not absolute. Information for LAT/LONG and region may not be available for all sites contained. It is at the discretion of the user to link the files for analysis and to create further data. Furthermore, detector communication issues or faulty detectors could also result in an inaccurate result for a given period, so values should not be taken as absolute but can be used to indicate trends.
https://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
best-smarter.me is ranked #642361 in GB with 3.13K Traffic. Categories: . Learn more about website traffic, market share, and more!
https://semrush.ebundletools.com/company/legal/terms-of-service/https://semrush.ebundletools.com/company/legal/terms-of-service/
1wnbrs.top is ranked # in US with 0 Traffic. Categories: . Learn more about website traffic, market share, and more!
Traffic analytics, rankings, and competitive metrics for better.com as of August 2025
A dataset comparing features, pricing, and ratings of the top sites to buy website traffic in 2025: Google Ads, Facebook Ads, PropellerAds, and SparkTraffic.