The City of Rochester and its staff use data about individuals in our community to inform decisions related to policies and programs we design, fund, and carry out. City staff must understand and be accountable to best practices and standards to guide the appropriate use of this information in an ethical and accurate manner that furthers the public good. With these disaggregated data standards, the City seeks to establish useful, uniform standards that guide City staff in their collection, stewardship, analysis, and reporting of information about individuals and their demographic characteristics.This internal guide provides recommended standards and practices to City of Rochester staff for the collection, analysis, and reporting of data related to following characteristics of an individual: Race & Ethnicity; Nativity & Citizenship Status; Language Spoken at Home & English Proficiency; Age; Sex, Gender, & Sexual Orientation; Marital Status; Disability; Address / Geography; Household Income & Size; Housing Tenure; Computer & Internet Use; Employment Status; Veteran Status; and Education Level. This kind of data that describes the characteristics of individuals in our community is disaggregated data. When we summarize data about these individuals and report the data at the group level, it becomes aggregated data. These disaggregated data standards can help City staff in different roles understand how to ask individuals about various demographic traits that may describe them, the collection of which may be useful to inform the City’s programs and policies. Note that this standards document does not mandate the collection of every one of these demographic factors for all analyses or program data intake designs – instead, it prompts City staff to intentionally design surveys and other data intake tools/applications to collect the right level of data to inform the City’s decision-making while also respecting the privacy of the individuals whose information the City seeks to gather. When a City team does choose to collect any of the above-mentioned demographic information about individuals in our community, we advise that they adhere to these standards.
The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
Demographic reports on TSP participant behavior and investment manager diversity are reported annually to Congress and available to the public via FRTIB’s Open Data Plan. Reports are in PDF format with included data tables.
This profile is based on the ERSI Community Analyst Report Template. This infographic contains data provided by Esri. The vintage of the data is 2021, 2026.
Community Analyst Report Template. This infographic contains data provided by Esri. The vintage of the data is 2023, 2028.
The 1991 Indonesia Demographic and Health Survey (IDHS) is a nationally representative survey of ever-married women age 15-49. It was conducted between May and July 1991. The survey was designed to provide information on levels and trends of fertility, infant and child mortality, family planning and maternal and child health. The IDHS was carried out as collaboration between the Central Bureau of Statistics, the National Family Planning Coordinating Board, and the Ministry of Health. The IDHS is follow-on to the National Indonesia Contraceptive Prevalence Survey conducted in 1987.
The DHS program has four general objectives: - To provide participating countries with data and analysis useful for informed policy choices; - To expand the international population and health database; - To advance survey methodology; and - To help develop in participating countries the technical skills and resources necessary to conduct demographic and health surveys.
In 1987 the National Indonesia Contraceptive Prevalence Survey (NICPS) was conducted in 20 of the 27 provinces in Indonesia, as part of Phase I of the DHS program. This survey did not include questions related to health since the Central Bureau of Statistics (CBS) had collected that information in the 1987 National Socioeconomic Household Survey (SUSENAS). The 1991 Indonesia Demographic and Health Survey (IDHS) was conducted in all 27 provinces of Indonesia as part of Phase II of the DHS program. The IDHS received financial assistance from several sources.
The 1991 IDHS was specifically designed to meet the following objectives: - To provide data concerning fertility, family planning, and maternal and child health that can be used by program managers, policymakers, and researchers to evaluate and improve existing programs; - To measure changes in fertility and contraceptive prevalence rates and at the same time study factors which affect the change, such as marriage patterns, urban/rural residence, education, breastfeeding habits, and the availability of contraception; - To measure the development and achievements of programs related to health policy, particularly those concerning the maternal and child health development program implemented through public health clinics in Indonesia.
National
Sample survey data [ssd]
Indonesia is divided into 27 provinces. For the implementation of its family planning program, the National Family Planning Coordinating Board (BKKBN) has divided these provinces into three regions as follows:
The 1990 Population Census of Indonesia shows that Java-Bali contains about 62 percent of the national population, while Outer Java-Bali I contains 27 percent and Outer Java-Bali II contains 11 percent. The sample for the Indonesia DHS survey was designed to produce reliable estimates of contraceptive prevalence and several other major survey variables for each of the 27 provinces and for urban and rural areas of the three regions.
In order to accomplish this goal, approximately 1500 to 2000 households were selected in each of the provinces in Java-Bali, 1000 households in each of the ten provinces in Outer Java-Bali I, and 500 households in each of the 11 provinces in Outer Java-Bali II for a total of 28,000 households. With an average of 0.8 eligible women (ever-married women age 15-49) per selected household, the 28,000 households were expected to yield approximately 23,000 individual interviews.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face [f2f]
The DHS model "A" questionnaire and manuals were modified to meet the requirements of measuring family planning and health program attainment, and were translated into Bahasa Indonesia.
The first stage of data editing was done by the field editors who checked the completed questionnaires for completeness and accuracy. Field supervisors also checked the questionnaires. They were then sent to the central office in Jakarta where they were edited again and open-ended questions were coded. The data were processed using 11 microcomputers and ISSA (Integrated System for Survey Analysis).
Data entry and editing were initiated almost immediately after the beginning of fieldwork. Simple range and skip errors were corrected at the data entry stage. Secondary machine editing of the data was initiated as soon as sufficient questionnaires had been entered. The objective of the secondary editing was to detect and correct, if possible, inconsistencies in the data. All of the data were entered and edited by September 1991. A brief report containing preliminary survey results was published in November 1991.
Of 28,141 households sampled, 27,109 were eligible to be interviewed (excluding those that were absent, vacant, or destroyed), and of these, 26,858 or 99 percent of eligible households were successfully interviewed. In the interviewed households, 23,470 eligible women were found and complete interviews were obtained with 98 percent of these women.
Note: See summarized response rates by place of residence in Table 1.2 of the survey report.
The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, data entry errors, etc. Although efforts were made during the design and implementation of the IDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate analytically.
Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the IDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can reasonably be assured that, apart from non-sampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.
If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the IDHS sample design depended on stratification, stages and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar year since birth - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
The 2013 Turkey Demographic and Health Survey (TDHS-2013) is a nationally representative sample survey. The primary objective of the TDHS-2013 is to provide data on socioeconomic characteristics of households and women between ages 15-49, fertility, childhood mortality, marriage patterns, family planning, maternal and child health, nutritional status of women and children, and reproductive health. The survey obtained detailed information on these issues from a sample of women of reproductive age (15-49). The TDHS-2013 was designed to produce information in the field of demography and health that to a large extent cannot be obtained from other sources.
Specifically, the objectives of the TDHS-2013 included: - Collecting data at the national level that allows the calculation of some demographic and health indicators, particularly fertility rates and childhood mortality rates, - Obtaining information on direct and indirect factors that determine levels and trends in fertility and childhood mortality, - Measuring the level of contraceptive knowledge and practice by contraceptive method and some background characteristics, i.e., region and urban-rural residence, - Collecting data relative to maternal and child health, including immunizations, antenatal care, and postnatal care, assistance at delivery, and breastfeeding, - Measuring the nutritional status of children under five and women in the reproductive ages, - Collecting data on reproductive-age women about marriage, employment status, and social status
The TDHS-2013 information is intended to provide data to assist policy makers and administrators to evaluate existing programs and to design new strategies for improving demographic, social and health policies in Turkey. Another important purpose of the TDHS-2013 is to sustain the flow of information for the interested organizations in Turkey and abroad on the Turkish population structure in the absence of a reliable and sufficient vital registration system. Additionally, like the TDHS-2008, TDHS-2013 is accepted as a part of the Official Statistic Program.
National coverage
The survey covered all de jure household members (usual residents), children age 0-5 years and women age 15-49 years resident in the household.
Sample survey data [ssd]
The sample design and sample size for the TDHS-2013 makes it possible to perform analyses for Turkey as a whole, for urban and rural areas, and for the five demographic regions of the country (West, South, Central, North, and East). The TDHS-2013 sample is of sufficient size to allow for analysis on some of the survey topics at the level of the 12 geographical regions (NUTS 1) which were adopted at the second half of the year 2002 within the context of Turkey’s move to join the European Union.
In the selection of the TDHS-2013 sample, a weighted, multi-stage, stratified cluster sampling approach was used. Sample selection for the TDHS-2013 was undertaken in two stages. The first stage of selection included the selection of blocks as primary sampling units from each strata and this task was requested from the TURKSTAT. The frame for the block selection was prepared using information on the population sizes of settlements obtained from the 2012 Address Based Population Registration System. Settlements with a population of 10,000 and more were defined as “urban”, while settlements with populations less than 10,000 were considered “rural” for purposes of the TDHS-2013 sample design. Systematic selection was used for selecting the blocks; thus settlements were given selection probabilities proportional to their sizes. Therefore more blocks were sampled from larger settlements.
The second stage of sample selection involved the systematic selection of a fixed number of households from each block, after block lists were obtained from TURKSTAT and were updated through a field operation; namely the listing and mapping fieldwork. Twentyfive households were selected as a cluster from urban blocks, and 18 were selected as a cluster from rural blocks. The total number of households selected in TDHS-2013 is 14,490.
The total number of clusters in the TDHS-2013 was set at 642. Block level household lists, each including approximately 100 households, were provided by TURKSTAT, using the National Address Database prepared for municipalities. The block lists provided by TURKSTAT were updated during the listing and mapping activities.
All women at ages 15-49 who usually live in the selected households and/or were present in the household the night before the interview were regarded as eligible for the Women’s Questionnaire and were interviewed. All analysis in this report is based on de facto women.
Note: A more technical and detailed description of the TDHS-2013 sample design, selection and implementation is presented in Appendix B of the final report of the survey.
Face-to-face [f2f]
Two main types of questionnaires were used to collect the TDHS-2013 data: the Household Questionnaire and the Individual Questionnaire for all women of reproductive age. The contents of these questionnaires were based on the DHS core questionnaire. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the TDHS-2013 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2013 questionnaires, national and international population and health agencies were consulted for their comments.
The questionnaires were developed in Turkish and translated into English.
TDHS-2013 questionnaires were returned to the Hacettepe University Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all selected households and eligible respondents were returned from the field. A total of 29 data entry staff were trained for data entry activities of the TDHS-2013. The data entry of the TDHS-2013 began in late September 2013 and was completed at the end of January 2014.
The data were entered and edited on microcomputers using the Census and Survey Processing System (CSPro) software. CSPro is designed to fulfill the census and survey data processing needs of data-producing organizations worldwide. CSPro is developed by MEASURE partners, the U.S. Bureau of the Census, ICF International’s DHS Program, and SerPro S.A. CSPro allows range, skip, and consistency errors to be detected and corrected at the data entry stage. During the data entry process, 100% verification was performed by entering each questionnaire twice using different data entry operators and comparing the entered data.
In all, 14,490 households were selected for the TDHS-2013. At the time of the listing phase of the survey, 12,640 households were considered occupied and, thus, eligible for interview. Of the eligible households, 93 percent (11,794) households were successfully interviewed. The main reasons the field teams were unable to interview some households were because some dwelling units that had been listed were found to be vacant at the time of the interview or the household was away for an extended period.
In the interviewed 11,794 households, 10,840 women were identified as eligible for the individual interview, aged 15-49 and were present in the household on the night before the interview. Interviews were successfully completed with 9,746 of these women (90 percent). Among the eligible women not interviewed in the survey, the principal reason for nonresponse was the failure to find the women at home after repeated visits to the household.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TDHS-2013 to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TDHS-2013 is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall
https://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004https://borealisdata.ca/api/datasets/:persistentId/versions/7.1/customlicense?persistentId=doi:10.7939/DVN/10004
The Population Research Laboratory (PRL), a member of the Association of Academic Survey Research Organizations (AASRO), seeks to advance the research, education and service goals of the University of Alberta by helping academic researchers and policy makers design and implement applied social science research projects. The PRL specializes in the gathering, analysis, and presentation of data about demographic, social and public issues. The PRL research team provides expert consultation and implementation of quantitative and qualitative research methods, project design, sample design, web-based, paper-based and telephone surveys, field site testing, data analysis and report writing. The PRL follows scientifically rigorous and transparent methods in each phase of a research project. Research Coordinators are members of the American Association for Public Opinion Research (AAPOR) and use best practices when conducting all types of research. The PRL has particular expertise in conducting computer-assisted telephone interviews (referred to as CATI surveys). When conducting telephone surveys, all calls are displayed as being from the "U of A PRL", a procedure that assures recipients that the call is not from a telemarketer, and thus helps increase response rates. The PRL maintains a complement of highly skilled telephone interviewers and supervisors who are thoroughly trained in FOIPP requirements, respondent selection procedures, questionnaire instructions, and neutral probing. A subset of interviewers are specially trained to convince otherwise reluctant respondents to participate in the study, a practice that increases response rates and lowers selection bias. PRL staff monitors data collection on a daily basis to allow any necessary adjustments to the volume and timing of calls and respondent selection criteria. The Population Research Laboratory (PRL) administered the 2012 Alberta Survey B. This survey of households across the province of Alberta continues to enable academic researchers, government departments, and non-profit organizations to explore a wide range of topics in a structured research framework and environment. Sponsors' research questions are asked together with demographic questions in a telephone interview of Alberta households. This data consists of the information from 1207 Alberta residence, interviewed between June 5, 2012 and June 27, 2012. The amount of responses indicates that the response rate, as calculated percentages representing the number of people who participated in the survey divided by the number selected in the eligible sample, was 27.6% for survey B. The subject ares included in the 2012 Alberta Survey B includes socio-demographic and background variables such as: household composition, age, gender, marital status, highest level of education, household income, religion, ethnic background, place of birth, employment status, home ownership, political party support and perceptions of financial status. In addition, the topics of public health and injury control, tobacco reduction, activity limitations and personal directives, unions, politics and health.
Demografy is a privacy by design customer demographics prediction AI platform.
Core features: - Demographic segmentation - Demographic analytics - API integration - Data export
Key advantages: - 100% coverage of lists - Accuracy estimate before purchase - GDPR-compliance as no sensitive data is required. Demografy can work with only first names or masked last names
Use cases: - Actionable analytics about your customers to get demographic insights - Appending missing demographic data to your records for customer segmentation and targeted marketing campaigns - Enhanced personalization knowing you customer better
Unlike traditional solutions, you don’t need to know and disclose your customer or prospect addresses, emails or other sensitive information. You can provide even masked last names keeping personal data in-house. This makes Demografy privacy by design and enables you to get 100% coverage of your audience since all you need to know is names.
The 2015-16 Armenia Demographic and Health Survey (2015-16 ADHS) is the fourth in a series of nationally representative sample surveys designed to provide information on population and health issues. It is conducted in Armenia under the worldwide Demographic and Health Surveys program. Specifically, the objective of the 2015-16 ADHS is to provide current and reliable information on fertility and abortion levels, marriage, sexual activity, fertility preferences, awareness and use of family planning methods, breastfeeding practices, nutritional status of young children, childhood mortality, maternal and child health, domestic violence against women, child discipline, awareness and behavior regarding AIDS and other sexually transmitted infections (STIs), and other health-related issues such as smoking, tuberculosis, and anemia. The survey obtained detailed information on these issues from women of reproductive age and, for certain topics, from men as well.
The 2015-16 ADHS results are intended to provide information needed to evaluate existing social programs and to design new strategies to improve the health of and health services for the people of Armenia. Data are presented by region (marz) wherever sample size permits. The information collected in the 2015-16 ADHS will provide updated estimates of basic demographic and health indicators covered in the 2000, 2005, and 2010 surveys.
The long-term objective of the survey includes strengthening the technical capacity of major government institutions, including the NSS. The 2015-16 ADHS also provides comparable data for longterm trend analysis because the 2000, 2005, 2010, and 2015-16 surveys were implemented by the same organization and used similar data collection procedures. It also adds to the international database of demographic and health–related information for research purposes.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-49 years resident in the household.
Sample survey data [ssd]
The sample was designed to produce representative estimates of key indicators at the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.
The sampling frame used for the 2015-16 ADHS is the Armenia Population and Housing Census, which was conducted in Armenia in 2011 (APHC 2011). The sampling frame is a complete list of enumeration areas (EAs) covering the whole country, a total number of 11,571 EAs, provided by the National Statistical Service (NSS) of Armenia, the implementing agency for the 2015-16 ADHS. This EA frame was created from the census data base by summarizing the households down to EA level. A representative probability sample of 8,749 households was selected for the 2015-16 ADHS sample. The sample was selected in two stages. In the first stage, 313 clusters (192 in urban areas and 121 in rural areas) were selected from a list of EAs in the sampling frame. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey. Appendix A provides additional information on the sample design of the 2015-16 Armenia DHS. Because of the approximately equal sample size in each marz, the sample is not self-weighting at the national level, and weighting factors have been calculated, added to the data file, and applied so that results are representative at the national level.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Five questionnaires were used for the 2015-16 ADHS: the Household Questionnaire, the Woman’s Questionnaire, the Man’s Questionnaire, the Biomarker Questionnaire, and the Fieldworker Questionnaire. These questionnaires, based on The DHS Program’s standard Demographic and Health Survey questionnaires, were adapted to reflect the population and health issues relevant to Armenia. Input was solicited from various stakeholders representing government ministries and agencies, nongovernmental organizations, and international donors. After all questionnaires were finalized in English, they were translated into Armenian. They were pretested in September-October 2015.
The processing of the 2015-16 ADHS data began shortly after fieldwork commenced. All completed questionnaires were edited immediately by field editors while still in the field and checked by the supervisors before being dispatched to the data processing center at the NSS central office in Yerevan. These completed questionnaires were edited and entered by 15 data processing personnel specially trained for this task. All data were entered twice for 100 percent verification. Data were entered using the CSPro computer package. The concurrent processing of the data was an advantage because the senior ADHS technical staff were able to advise field teams of problems detected during the data entry. In particular, tables were generated to check various data quality parameters. Moreover, the double entry of data enabled easy comparison and identification of errors and inconsistencies. As a result, specific feedback was given to the teams to improve performance. The data entry and editing phase of the survey was completed in June 2016.
A total of 8,749 households were selected in the sample, of which 8,205 were occupied at the time of the fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. The number of occupied households successfully interviewed was 7,893, yielding a household response rate of 96 percent. The household response rate in urban areas (96 percent) was nearly the same as in rural areas (97 percent).
In these households, a total of 6,251 eligible women were identified; interviews were completed with 6,116 of these women, yielding a response rate of 98 percent. In one-half of the households, a total of 2,856 eligible men were identified, and interviews were completed with 2,755 of these men, yielding a response rate of 97 percent. Among men, response rates are slightly lower in urban areas (96 percent) than in rural areas (97 percent), whereas rates for women are the same in urban and in rural areas (98 percent).
The 2015-16 ADHS achieved a slightly higher response rate for households than the 2010 ADHS (NSS 2012). The increase is only notable for urban households (96 percent in 2015-16 compared with 94 percent in 2010). Response rates in all other categories are very close to what they were in 2010.
SAS computer software were used to calculate sampling errors for the 2015-16 ADHS. The programs used the Taylor linearization method of variance estimation for means or proportions and the Jackknife repeated replication method for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months - Nutritional status of children based on the NCHS/CDC/WHO International Reference Population - Vaccinations by background characteristics for children age 18-29 months
See details of the data quality tables in Appendix C of the survey final report.
The SCA’s comprehensive capital planning process includes developing and analyzing quality data, creating and updating the Department of Education’s Five-Year Capital Plans, and monitoring projects through completion. The SCA prioritizes capital projects to best meet the capacity and building improvements needs throughout the City. Additionally, the SCA assures that the Capital Plan aligns with New York State and City Department of Education mandates, academic initiatives, and budgetary resources. This is one of the most current published reports.
The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.
National coverage
Sample survey data [ssd]
Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.
The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).
Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.
Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.
Face-to-face [f2f]
The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.
The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence
In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.
The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.
Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.
Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.
Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.
In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.
In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer
The Tanzania Demographic and Health Survey (TDHS) is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1999 TRCHS was to collect data at the national level (with breakdowns by urban-rural and Mainland-Zanzibar residence wherever warranted) on fertility levels and preferences, family planning use, maternal and child health, breastfeeding practices, nutritional status of young children, childhood mortality levels, knowledge and behaviour regarding HIV/AIDS, and the availability of specific health services within the community.1 Related objectives were to produce these results in a timely manner and to ensure that the data were disseminated to a wide audience of potential users in governmental and nongovernmental organisations within and outside Tanzania. The ultimate intent is to use the information to evaluate current programmes and to design new strategies for improving health and family planning services for the people of Tanzania.
National. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately.
Sample survey data
The TRCHS used a three-stage sample design. Overall, 176 census enumeration areas were selected (146 on the Mainland and 30 in Zanzibar) with probability proportional to size on an approximately self-weighting basis on the Mainland, but with oversampling of urban areas and Zanzibar. To reduce costs and maximise the ability to identify trends over time, these enumeration areas were selected from the 357 sample points that were used in the 1996 TDHS, which in turn were selected from the 1988 census frame of enumeration in a two-stage process (first wards/branches and then enumeration areas within wards/branches). Before the data collection, fieldwork teams visited the selected enumeration areas to list all the households. From these lists, households were selected to be interviewed. The sample was designed to provide estimates for the whole country, for urban and rural areas separately, and for Zanzibar and, in some cases, Unguja and Pemba separately. The health facilities component of the TRCHS involved visiting hospitals, health centres, and pharmacies located in areas around the households interviewed. In this way, the data from the two components can be linked and a richer dataset produced.
See detailed sample implementation in the APPENDIX A of the final report.
Face-to-face
The household survey component of the TRCHS involved three questionnaires: 1) a Household Questionnaire, 2) a Women’s Questionnaire for all individual women age 15-49 in the selected households, and 3) a Men’s Questionnaire for all men age 15-59.
The health facilities survey involved six questionnaires: 1) a Community Questionnaire administered to men and women in each selected enumeration area; 2) a Facility Questionnaire; 3) a Facility Inventory; 4) a Service Provider Questionnaire; 5) a Pharmacy Inventory Questionnaire; and 6) a questionnaire for the District Medical Officers.
All these instruments were based on model questionnaires developed for the MEASURE programme, as well as on the questionnaires used in the 1991-92 TDHS, the 1994 TKAP, and the 1996 TDHS. These model questionnaires were adapted for use in Tanzania during meetings with representatives from the Ministry of Health, the University of Dar es Salaam, the Tanzania Food and Nutrition Centre, USAID/Tanzania, UNICEF/Tanzania, UNFPA/Tanzania, and other potential data users. The questionnaires and manual were developed in English and then translated into and printed in Kiswahili.
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview and children under five who were to be weighed and measured. Information was also collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, ownership of various consumer goods, and use of iodised salt. Finally, the Household Questionnaire was used to collect some rudimentary information about the extent of child labour.
The Women’s Questionnaire was used to collect information from women age 15-49. These women were asked questions on the following topics: · Background characteristics (age, education, religion, type of employment) · Birth history · Knowledge and use of family planning methods · Antenatal, delivery, and postnatal care · Breastfeeding and weaning practices · Vaccinations, birth registration, and health of children under age five · Marriage and recent sexual activity · Fertility preferences · Knowledge and behaviour concerning HIV/AIDS.
The Men’s Questionnaire covered most of these same issues, except that it omitted the sections on the detailed reproductive history, maternal health, and child health. The final versions of the English questionnaires are provided in Appendix E.
Before the questionnaires could be finalised, a pretest was done in July 1999 in Kibaha District to assess the viability of the questions, the flow and logical sequence of the skip pattern, and the field organisation. Modifications to the questionnaires, including wording and translations, were made based on lessons drawn from the exercise.
In all, 3,826 households were selected for the sample, out of which 3,677 were occupied. Of the households found, 3,615 were interviewed, representing a response rate of 98 percent. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants were not at home despite of several callbacks.
In the interviewed households, a total of 4,118 eligible women (i.e., women age 15-49) were identified for the individual interview, and 4,029 women were actually interviewed, yielding a response rate of 98 percent. A total of 3,792 eligible men (i.e., men age 15-59), were identified for the individual interview, of whom 3,542 were interviewed, representing a response rate of 93 percent. The principal reason for nonresponse among both eligible men and women was the failure to find them at home despite repeated visits to the household. The lower response rate among men than women was due to the more frequent and longer absences of men.
The response rates are lower in urban areas due to longer absence of respondents from their homes. One-member households are more common in urban areas and are more difficult to interview because they keep their houses locked most of the time. In urban settings, neighbours often do not know the whereabouts of such people.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the TRCHS to minimise this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the TRCHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TRCHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the TRCHS is the ISSA Sampling Error Module (SAMPERR). This module used the Taylor linearisation method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rate
Note: See detailed sampling error calculation in the APPENDIX B
If someone wants to use the dataset, he/she can contact the corresponding author.
The primary objective of the 2012 Indonesia Demographic and Health Survey (IDHS) is to provide policymakers and program managers with national- and provincial-level data on representative samples of all women age 15-49 and currently-married men age 15-54.
The 2012 IDHS was specifically designed to meet the following objectives: • Provide data on fertility, family planning, maternal and child health, adult mortality (including maternal mortality), and awareness of AIDS/STIs to program managers, policymakers, and researchers to help them evaluate and improve existing programs; • Measure trends in fertility and contraceptive prevalence rates, and analyze factors that affect such changes, such as marital status and patterns, residence, education, breastfeeding habits, and knowledge, use, and availability of contraception; • Evaluate the achievement of goals previously set by national health programs, with special focus on maternal and child health; • Assess married men’s knowledge of utilization of health services for their family’s health, as well as participation in the health care of their families; • Participate in creating an international database that allows cross-country comparisons that can be used by the program managers, policymakers, and researchers in the areas of family planning, fertility, and health in general
National coverage
Sample survey data [ssd]
Indonesia is divided into 33 provinces. Each province is subdivided into districts (regency in areas mostly rural and municipality in urban areas). Districts are subdivided into subdistricts, and each subdistrict is divided into villages. The entire village is classified as urban or rural.
The 2012 IDHS sample is aimed at providing reliable estimates of key characteristics for women age 15-49 and currently-married men age 15-54 in Indonesia as a whole, in urban and rural areas, and in each of the 33 provinces included in the survey. To achieve this objective, a total of 1,840 census blocks (CBs)-874 in urban areas and 966 in rural areas-were selected from the list of CBs in the selected primary sampling units formed during the 2010 population census.
Because the sample was designed to provide reliable indicators for each province, the number of CBs in each province was not allocated in proportion to the population of the province or its urban-rural classification. Therefore, a final weighing adjustment procedure was done to obtain estimates for all domains. A minimum of 43 CBs per province was imposed in the 2012 IDHS design.
Refer to Appendix B in the final report for details of sample design and implementation.
Face-to-face [f2f]
The 2012 IDHS used four questionnaires: the Household Questionnaire, the Woman’s Questionnaire, the Currently Married Man’s Questionnaire, and the Never-Married Man’s Questionnaire. Because of the change in survey coverage from ever-married women age 15-49 in the 2007 IDHS to all women age 15-49 in the 2012 IDHS, the Woman’s Questionnaire now has questions for never-married women age 15-24. These questions were part of the 2007 Indonesia Young Adult Reproductive Survey questionnaire.
The Household and Woman’s Questionnaires are largely based on standard DHS phase VI questionnaires (March 2011 version). The model questionnaires were adapted for use in Indonesia. Not all questions in the DHS model were adopted in the IDHS. In addition, the response categories were modified to reflect the local situation.
The Household Questionnaire was used to list all the usual members and visitors who spent the previous night in the selected households. Basic information collected on each person listed includes age, sex, education, marital status, education, and relationship to the head of the household. Information on characteristics of the housing unit, such as the source of drinking water, type of toilet facilities, construction materials used for the floor, roof, and outer walls of the house, and ownership of various durable goods were also recorded in the Household Questionnaire. These items reflect the household’s socioeconomic status and are used to calculate the household wealth index. The main purpose of the Household Questionnaire was to identify women and men who were eligible for an individual interview.
The Woman’s Questionnaire was used to collect information from all women age 15-49. These women were asked questions on the following topics: • Background characteristics (marital status, education, media exposure, etc.) • Reproductive history and fertility preferences • Knowledge and use of family planning methods • Antenatal, delivery, and postnatal care • Breastfeeding and infant and young children feeding practices • Childhood mortality • Vaccinations and childhood illnesses • Marriage and sexual activity • Fertility preferences • Woman’s work and husband’s background characteristics • Awareness and behavior regarding HIV-AIDS and other sexually transmitted infections (STIs) • Sibling mortality, including maternal mortality • Other health issues
Questions asked to never-married women age 15-24 addressed the following: • Additional background characteristics • Knowledge of the human reproduction system • Attitudes toward marriage and children • Role of family, school, the community, and exposure to mass media • Use of tobacco, alcohol, and drugs • Dating and sexual activity
The Man’s Questionnaire was administered to all currently married men age 15-54 living in every third household in the 2012 IDHS sample. This questionnaire includes much of the same information included in the Woman’s Questionnaire, but is shorter because it did not contain questions on reproductive history or maternal and child health. Instead, men were asked about their knowledge of and participation in health-careseeking practices for their children.
The questionnaire for never-married men age 15-24 includes the same questions asked to nevermarried women age 15-24.
All completed questionnaires, along with the control forms, were returned to the BPS central office in Jakarta for data processing. The questionnaires were logged and edited, and all open-ended questions were coded. Responses were entered in the computer twice for verification, and they were corrected for computeridentified errors. Data processing activities were carried out by a team of 58 data entry operators, 42 data editors, 14 secondary data editors, and 14 data entry supervisors. A computer package program called Census and Survey Processing System (CSPro), which was specifically designed to process DHS-type survey data, was used in the processing of the 2012 IDHS.
The response rates for both the household and individual interviews in the 2012 IDHS are high. A total of 46,024 households were selected in the sample, of which 44,302 were occupied. Of these households, 43,852 were successfully interviewed, yielding a household response rate of 99 percent.
Refer to Table 1.2 in the final report for more detailed summarized results of the of the 2012 IDHS fieldwork for both the household and individual interviews, by urban-rural residence.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Indonesia Demographic and Health Survey (2012 IDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 IDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 IDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2012 IDHS is a SAS program. This program used the Taylor linearization method
The Bangladesh Demographic and Health Survey (BDHS) is part of the worldwide Demographic and Health Surveys program, which is designed to collect data on fertility, family planning, and maternal and child health.
The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - assess the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.
More specifically, the objective of the BDHS is to provide up-to-date information on fertility and childhood mortality levels; nuptiality; fertility preferences; awareness, approval, and use of family planning methods; breastfeeding practices; nutrition levels; and maternal and child health. This information is intended to assist policymakers and administrators in evaluating and designing programs and strategies for improving health and family planning services in the country.
National
Sample survey data
Bangladesh is divided into six administrative divisions, 64 districts (zillas), and 490 thanas. In rural areas, thanas are divided into unions and then mauzas, a land administrative unit. Urban areas are divided into wards and then mahallas. The 1996-97 BDHS employed a nationally-representative, two-stage sample that was selected from the Integrated Multi-Purpose Master Sample (IMPS) maintained by the Bangladesh Bureau of Statistics. Each division was stratified into three groups: 1 ) statistical metropolitan areas (SMAs), 2) municipalities (other urban areas), and 3) rural areas. 3 In the rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 Census frame, the units for the BDHS were sub-selected from the IMPS with equal probability so as to retain the overall probability proportional to size. A total of 316 primary sampling units were utilized for the BDHS (30 in SMAs, 42 in municipalities, and 244 in rural areas). In order to highlight changes in survey indicators over time, the 1996-97 BDHS utilized the same sample points (though not necessarily the same households) that were selected for the 1993-94 BDHS, except for 12 additional sample points in the new division of Sylhet. Fieldwork in three sample points was not possible (one in Dhaka Cantonment and two in the Chittagong Hill Tracts), so a total of 313 points were covered.
Since one objective of the BDHS is to provide separate estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal and Sylhet Divisions and for municipalities relative to the other divisions, SMAs and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.
Mitra and Associates conducted a household listing operation in all the sample points from 15 September to 15 December 1996. A systematic sample of 9,099 households was then selected from these lists. Every second household was selected for the men's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed all currently married men age 15-59. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 3,000 currently married men age 15-59.
Note: See detailed in APPENDIX A of the survey report.
Face-to-face
Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Men' s Questionnaire and a Community Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. These model questionnaires were adapted for use in Bangladesh during a series of meetings with a small Technical Task Force that consisted of representatives from NIPORT, Mitra and Associates, USAID/Bangladesh, the International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Population Council/Dhaka, and Macro International Inc (see Appendix D for a list of members). Draft questionnaires were then circulated to other interested groups and were reviewed by the BDHS Technical Review Committee (see Appendix D for list of members). The questionnaires were developed in English and then translated into and printed in Bangla (see Appendix E for final version in English).
The Household Questionnaire was used to list all the usual members and visitors in the selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for the individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.
The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age five, - Marriage, - Fertility preferences, - Husband's background and respondent's work, - Knowledge of AIDS, - Height and weight of children under age five and their mothers.
The Men's Questionnaire was used to interview currently married men age 15-59. It was similar to that for women except that it omitted the sections on reproductive history, antenatal and delivery care, breastfeeding, vaccinations, and height and weight. The Community Questionnaire was completed for each sample point and included questions about the existence in the community of income-generating activities and other development organizations and the availability of health and family planning services.
A total of 9,099 households were selected for the sample, of which 8,682 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 8,762 households occupied, 99 percent were successfully interviewed. In these households, 9,335 women were identified as eligible for the individual interview (i.e., ever-married and age 10-49) and interviews were completed for 9,127 or 98 percent of them. In the half of the households that were selected for inclusion in the men's survey, 3,611 eligible ever-married men age 15-59 were identified, of whom 3,346 or 93 percent were interviewed.
The principal reason for non-response among eligible women and men was the failure to find them at home despite repeated visits to the household. The refusal rate was low.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the BDHS to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the BDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the BDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the BDHS is the ISSA Sampling Error Module. This module used the Taylor
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Demographic Projection Report - Enrollment Projections - New York City Public Schools prepared by Statistical Forecasting’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/47ea606c-c21f-4c05-846f-370c283d8ec2 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
The SCA’s comprehensive capital planning process includes developing and analyzing quality data, creating and updating the Department of Education’s Five-Year Capital Plans, and monitoring projects through completion. The SCA prioritizes capital projects to best meet the capacity and building improvements needs throughout the City. Additionally, the SCA assures that the Capital Plan aligns with New York State and City Department of Education mandates, academic initiatives, and budgetary resources. This is one of the most current published reports.
--- Original source retains full ownership of the source dataset ---
The SHDS is a national sample survey designed to provide information on population, birth spacing, reproductive health, nutrition, maternal and child health, child survival, HIV/AIDS and sexually transmitted infections (STIs), in Somalia.. The main objective of the SHDS was to provide evidence on the health and demographic characteristics of the Somali population that will guide the development of programmes and formulation of effective policies. This information would also help monitor and evaluate national, sub-national and sector development plans, including the Sustainable Development Goals (SDGs), both by the government and development partners. The target population for SHDS was the women between 15 and 49 years of age, and the children less than the age of 5 years
The SHDS 2020 was a nationally representative household survey.
The unit analysis of this survey are households, women aged 15-49 and children aged 0-5
This sample survey covered Women aged 15-49 and Children aged 0-5 years.
Sample survey data [ssd]
Sample Design The sample for the SHDS was designed to provide estimates of key indicators for the country as a whole, for each of the eighteen pre-war geographical regions, which are the country's first-level administrative divisions, as well as separately for urban, rural and nomadic areas. With the exception of Banadir region, which is considered fully urban, each region was stratified into urban, rural and nomadic areas, yielding a total of 55 sampling strata. All three strata of Lower Shabelle and Middle Juba regions, as well as the rural and nomadic strata of Bay region, were completely excluded from the survey due to security reasons. A final total of 47 sampling strata formed the sampling frame. Through the use of up-to-date, high-resolution satellite imagery, as well as on-the-ground knowledge of staff from the respective ministries of planning, all dwelling structures were digitized in urban and rural areas. Enumeration Areas (EAs) were formed onscreen through a spatial count of dwelling structures in a Geographic Information System (GIS) software. Thereafter, a sample ground verification of the digitized structures was carried out for large urban and rural areas and necessary adjustments made to the frame.
Each EA created had a minimum of 50 and a maximum of 149 dwelling structures. A total of 10,525 EAs were digitized: 7,488 in urban areas and 3,037 in rural areas. However, because of security and accessibility constraints, not all digitized areas were included in the final sampling frame-9,136 EAs (7,308 in urban and 1,828 in rural) formed the final frame. The nomadic frame comprised an updated list of temporary nomadic settlements (TNS) obtained from the nomadic link workers who are tied to these settlements. A total of 2,521 TNS formed the SHDS nomadic sampling frame. The SHDS followed a three-stage stratified cluster sample design in urban and rural strata with a probability proportional to size, for the sampling of Primary Sampling Units (PSU) and Secondary Sampling Units (SSU) (respectively at the first and second stage), and systematic sampling of households at the third stage. For the nomadic stratum, a two-stage stratified cluster sample design was applied with a probability proportional to size for sampling of PSUs at the first stage and systematic sampling of households at the second stage. To ensure that the survey precision is comparable across regions, PSUs were allocated equally to all regions with slight adjustments in two regions. Within each stratum, a sample of 35 EAs was selected independently, with probability proportional to the number of digitized dwelling structures. In this first stage, a total of 1,433 EAs were allocated (to urban - 770 EAs, rural - 488 EAs, and nomadic - 175 EAs) representing about 16 percent of the total frame of EAs. In the urban and rural selected EAs, all households were listed and information on births and deaths was recorded through the maternal mortality questionnaire. The data collected in this first phase was cleaned and a summary of households listed per EA formed the sampling frames for the second phase. In the second stage, 10 EAs were sampled out of the possible 35 that were listed, using probability proportional to the number of households. All households in each of these 10 EAs were serialized based on their location in the EA and 30 of these households sampled for the survey. The serialization was done to ensure distribution of the households interviewed for the survey in the EA sampled. A total of 220 EAs and 150 EAs were allocated to urban and rural strata respectively, while in the third stage, an average of 30 households were selected from the listed households in every EA to yield a total of 16,360 households from 538 EAs covered (220 EAs in urban, 147 EAs in rural and 171 EAs in nomadic) out of the sampled 545 EAs. In nomadic areas, a sample of 10 EAs (in this case TNS) were selected from each nomadic stratum, with probability proportional to the number of estimated households. A complete listing of households was carried out in the selected TNS followed by the selection of 30 households for the main survey interview. In those TNS with less than 30 households, all households were interviewed for the main survey. All eligible ever-married women aged 12 to 49 and never-married women aged 15 to 49 were interviewed in the selected households, while the household questionnaire was administered to all households selected. The maternal mortality questionnaire was administered to all households in each sampled TNS.
Face-to-face [f2f]
A total of 16,360 households were selected for the sample, of which 15,870 were occupied. Of the occupied households, 15,826 were successfully interviewed, yielding a response rate of 99.7 percent. The SHDS 2020 interviewed 16,486 women-11,876 ever-married women and 4,610 never-married women.
Sampling errors are important data quality parameters which give measure of the precision of the survey estimates. They aid in determining the statistical reliability of survey estimates. The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the Somaliland Health and Demographic Survey ( SHDS 2020) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically. Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the SHDS 2020 is only one of many samples that could have been selected from the same population, using the same design and sample size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results. Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design. If the sample of respondents had been selected by simple random sampling, it would have been possible to use straightforward formulas for calculating sampling errors. However, the SHDS 2020 sample was the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. The variance approximation procedure that account for the complex sample design used R program was estimated sampling errors in SHDS which is Taylor series linearization. The non-linear estimates are approximated by linear ones for estimating variance. The linear approximation is derived by taking the first-order Tylor series approximation. Standard variance estimation methods for linear statistics are then used to estimate the variance of the linearized estimator. The Taylor linearisation method treats any linear statistic such as a percentage or mean as a ratio estimate, r = y/x, where y represents the total sample value for variable y and x represents the total number of cases in the group or subgroup under consideration
The Medicaid Managed Care Enrollment Report profiles enrollment statistics on Medicaid managed care programs on a plan-specific level. The managed care enrollment statistics include enrollees receiving comprehensive benefits and limited benefits and are point-in-time counts. Because Medicaid beneficiaries may be enrolled concurrently in more than one type of managed care program (e.g., a Comprehensive MCO and a BHO), users should not sum enrollment across all program types, since the total would count individuals more than once and, in some states, exceed the actual number of Medicaid enrollees. Comprehensive MCOs cover acute, primary, and specialty medical care services; they may also cover behavioral health, long-term services and supports, and other benefits in some states. Limited benefit managed care programs, including MLTSS only, BHO, Dental, Transportation, and Other cover a narrower set of services. The indicated territory was not able to supply data for this report. The Northern Mariana Islands reported that they have no Medicaid managed care enrollment, but they did not report total Medicaid enrollees. The “Total dually eligible individuals” column represents an unduplicated count of all beneficiaries in FFS and any type of managed care, including enrollees receiving full Medicaid benefits or Medicaid cost sharing. "--" indicates states that do not operate programs of a given type. 0 signifies that a state operated a program of this type in 2014, but it ended before July 1, 2014, or began after that date.
The City of Rochester and its staff use data about individuals in our community to inform decisions related to policies and programs we design, fund, and carry out. City staff must understand and be accountable to best practices and standards to guide the appropriate use of this information in an ethical and accurate manner that furthers the public good. With these disaggregated data standards, the City seeks to establish useful, uniform standards that guide City staff in their collection, stewardship, analysis, and reporting of information about individuals and their demographic characteristics.This internal guide provides recommended standards and practices to City of Rochester staff for the collection, analysis, and reporting of data related to following characteristics of an individual: Race & Ethnicity; Nativity & Citizenship Status; Language Spoken at Home & English Proficiency; Age; Sex, Gender, & Sexual Orientation; Marital Status; Disability; Address / Geography; Household Income & Size; Housing Tenure; Computer & Internet Use; Employment Status; Veteran Status; and Education Level. This kind of data that describes the characteristics of individuals in our community is disaggregated data. When we summarize data about these individuals and report the data at the group level, it becomes aggregated data. These disaggregated data standards can help City staff in different roles understand how to ask individuals about various demographic traits that may describe them, the collection of which may be useful to inform the City’s programs and policies. Note that this standards document does not mandate the collection of every one of these demographic factors for all analyses or program data intake designs – instead, it prompts City staff to intentionally design surveys and other data intake tools/applications to collect the right level of data to inform the City’s decision-making while also respecting the privacy of the individuals whose information the City seeks to gather. When a City team does choose to collect any of the above-mentioned demographic information about individuals in our community, we advise that they adhere to these standards.