100+ datasets found
  1. a

    Data from: Google Earth Engine (GEE)

    • hub.arcgis.com
    • data.amerigeoss.org
    • +5more
    Updated Nov 28, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://hub.arcgis.com/items/bb1b131beda24006881d1ab019205277
    Explore at:
    Dataset updated
    Nov 28, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

  2. d

    Outscraper Google Maps Scraper

    • datarade.ai
    .csv, .xls, .json
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Outscraper Google Maps Scraper [Dataset]. https://datarade.ai/data-products/outscraper-google-maps-scraper-outscraper
    Explore at:
    .csv, .xls, .jsonAvailable download formats
    Dataset updated
    Dec 9, 2021
    Area covered
    Western Sahara, Guyana, Cameroon, Botswana, Egypt, Zimbabwe, United States Minor Outlying Islands, Mayotte, Uruguay, Sint Eustatius and Saba
    Description

    Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.

    Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.

    Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.

    By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.

    In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.

    https://outscraper.com/google-maps-scraper/

    As a result of the Google Maps scraping, your data file will contain the following details:

    Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID

    If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.

    Domain Contact Scraper can scrape these details:

    Email Facebook Github Instagram Linkedin Phone Twitter Youtube

  3. Most popular navigation apps in the U.S. 2023, by downloads

    • statista.com
    Updated Mar 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most popular navigation apps in the U.S. 2023, by downloads [Dataset]. https://www.statista.com/statistics/865413/most-popular-us-mapping-apps-ranked-by-audience/
    Explore at:
    Dataset updated
    Mar 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Google Maps was the most downloaded map and navigation app in the United States, despite being a standard pre-installed app on Android smartphones. Waze followed, with 9.89 million downloads in the examined period. The app, which comes with maps and the possibility to access information on traffic via users reports, was developed in 2006 by the homonymous Waze company, acquired by Google in 2013.

    Usage of navigation apps in the U.S. As of 2021, less than two in 10 U.S. adults were using a voice assistant in their cars, in order to place voice calls or follow voice directions to a destination. Navigation apps generally offer the possibility for users to download maps to access when offline. Native iOS app Apple Maps, which does not offer this possibility, was by far the navigation app with the highest data consumption, while Google-owned Waze used only 0.23 MB per 20 minutes.

    Usage of navigation apps worldwide In July 2022, Google Maps was the second most popular Google-owned mobile app, with 13.35 million downloads from global users during the examined month. In China, the Gaode Map app, which is operated along with other navigation services by the Alibaba owned AutoNavi, had approximately 730 million monthly active users as of September 2022.

  4. Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C (TOA)

    • developers.google.com
    Updated Feb 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Union/ESA/Copernicus (2024). Harmonized Sentinel-2 MSI: MultiSpectral Instrument, Level-1C (TOA) [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_HARMONIZED
    Explore at:
    Dataset updated
    Feb 15, 2024
    Dataset provided by
    European Space Agencyhttp://www.esa.int/
    Time period covered
    Jun 27, 2015 - Jul 14, 2025
    Area covered
    Description

    After 2022-01-25, Sentinel-2 scenes with PROCESSING_BASELINE '04.00' or above have their DN (value) range shifted by 1000. The HARMONIZED collection shifts data in newer scenes to be in the same range as in older scenes. Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission supporting Copernicus Land Monitoring studies, including the monitoring of vegetation, soil and water cover, as well as observation of inland waterways and coastal areas. The Sentinel-2 data contain 13 UINT16 spectral bands representing TOA reflectance scaled by 10000. See the Sentinel-2 User Handbook for details. QA60 is a bitmask band that contained rasterized cloud mask polygons until Feb 2022, when these polygons stopped being produced. Starting in February 2024, legacy-consistent QA60 bands are constructed from the MSK_CLASSI cloud classification bands. For more details, see the full explanation of how cloud masks are computed.. Each Sentinel-2 product (zip archive) may contain multiple granules. Each granule becomes a separate Earth Engine asset. EE asset ids for Sentinel-2 assets have the following format: COPERNICUS/S2/20151128T002653_20151128T102149_T56MNN. Here the first numeric part represents the sensing date and time, the second numeric part represents the product generation date and time, and the final 6-character string is a unique granule identifier indicating its UTM grid reference (see MGRS). The Level-2 data produced by ESA can be found in the collection COPERNICUS/S2_SR. For datasets to assist with cloud and/or cloud shadow detection, see COPERNICUS/S2_CLOUD_PROBABILITY and GOOGLE/CLOUD_SCORE_PLUS/V1/S2_HARMONIZED. For more details on Sentinel-2 radiometric resolution, see this page.

  5. E

    Google Maps Statistics And Facts [2025]

    • electroiq.com
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Electro IQ (2025). Google Maps Statistics And Facts [2025] [Dataset]. https://electroiq.com/stats/google-maps-statistics/
    Explore at:
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Electro IQ
    License

    https://electroiq.com/privacy-policyhttps://electroiq.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Google Maps Statistics: Google Maps has changed how we used to navigate or explore the world. In 2024, it will most certainly become the ultimate mapping service, getting so much more than most other services and boasting so many more users. This article will discuss some of the Google Maps statistics its global coverage, technology achievements, and downloads.

  6. D

    Digital Map Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Digital Map Market Report [Dataset]. https://www.marketreportanalytics.com/reports/digital-map-market-88590
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The digital map market, currently valued at $25.55 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 13.39% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of location-based services (LBS) across various sectors, including transportation, logistics, and e-commerce, is a primary driver. Furthermore, the proliferation of smartphones and connected devices, coupled with advancements in GPS technology and mapping software, continues to fuel market growth. The rising demand for high-resolution, real-time mapping data for autonomous vehicles and smart city initiatives also significantly contributes to market expansion. Competition among established players like Google, TomTom, and ESRI, alongside emerging innovative companies, is fostering continuous improvement in map accuracy, functionality, and data accessibility. This competitive landscape drives innovation and lowers costs, making digital maps increasingly accessible to a broader range of users and applications. However, market growth is not without its challenges. Data security and privacy concerns surrounding the collection and use of location data represent a significant restraint. Ensuring data accuracy and maintaining up-to-date map information in rapidly changing environments also pose operational hurdles. Regulatory compliance with differing data privacy laws across various jurisdictions adds another layer of complexity. Despite these challenges, the long-term outlook for the digital map market remains positive, driven by the relentless integration of location intelligence into nearly every facet of modern life, from personal navigation to complex enterprise logistics solutions. The market's segmentation (although not explicitly provided) likely includes various map types (e.g., road maps, satellite imagery, 3D maps), pricing models (subscriptions, one-time purchases), and industry verticals served. This diversified market structure further underscores its resilience and potential for sustained growth. Recent developments include: December 2022 - The Linux Foundation has partnered with some of the biggest technology companies in the world to build interoperable and open map data in what is an apparent move t. The Overture Maps Foundation, as the new effort is called, is officially hosted by the Linux Foundation. The ultimate aim of the Overture Maps Foundation is to power new map products through openly available datasets that can be used and reused across applications and businesses, with each member throwing their data and resources into the mix., July 27, 2022 - Google declared the launch of its Street View experience in India in collaboration with Genesys International, an advanced mapping solutions company, and Tech Mahindra, a provider of digital transformation, consulting, and business re-engineering solutions and services. Google, Tech Mahindra, and Genesys International also plan to extend this to more than around 50 cities by the end of the year 2022.. Key drivers for this market are: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Potential restraints include: Growth in Application for Advanced Navigation System in Automotive Industry, Surge in Demand for Geographic Information System (GIS); Increased Adoption of Connected Devices and Internet. Notable trends are: Surge in Demand for GIS and GNSS to Influence the Adoption of Digital Map Technology.

  7. f

    Community prevalence of chronic respiratory symptoms in rural Malawi:...

    • plos.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hastings T. Banda; Rachael Thomson; Kevin Mortimer; George A. F. Bello; Grace B. Mbera; Rasmus Malmborg; Brian Faragher; S. Bertel Squire (2023). Community prevalence of chronic respiratory symptoms in rural Malawi: Implications for policy [Dataset]. http://doi.org/10.1371/journal.pone.0188437
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Hastings T. Banda; Rachael Thomson; Kevin Mortimer; George A. F. Bello; Grace B. Mbera; Rasmus Malmborg; Brian Faragher; S. Bertel Squire
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Malawi
    Description

    BackgroundNo community prevalence studies have been done on chronic respiratory symptoms of cough, wheezing and shortness of breath in adult rural populations in Malawi. Case detection rates of tuberculosis (TB) and chronic airways disease are low in resource-poor primary health care facilities.ObjectiveTo understand the prevalence of chronic respiratory symptoms and recorded diagnoses of TB in rural Malawian adults in order to improve case detection and management of these diseases.MethodsA population proportional, cross-sectional study was conducted to determine the proportion of the population with chronic respiratory symptoms that had a diagnosis of tuberculosis or chronic airways disease in two rural communities in Malawi. Households were randomly selected using Google Earth Pro software. Smart phones loaded with Open Data Kit Essential software were used for data collection. Interviews were conducted with 15795 people aged 15 years and above to enquire about symptoms of chronic cough, wheeze and shortness of breath.ResultsOverall 3554 (22.5%) participants reported at least one of these respiratory symptoms. Cough was reported by 2933, of whom 1623 (55.3%) reported cough only and 1310 (44.7%) combined with wheeze and/or shortness of breath. Only 4.6% (164/3554) of participants with chronic respiratory symptoms had one or more of the following diagnoses in their health passports (patient held medical records): TB, asthma, bronchitis and chronic obstructive pulmonary disease)ConclusionsThe high prevalence of chronic respiratory symptoms coupled with limited recorded diagnoses in patient-held medical records in these rural communities suggests a high chronic respiratory disease burden and unmet health need.

  8. Satellite Embedding V1

    • developers.google.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google Earth Engine, Satellite Embedding V1 [Dataset]. https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_SATELLITE_EMBEDDING_V1_ANNUAL
    Explore at:
    Dataset provided by
    Googlehttp://google.com/
    Google Earth Engine
    Time period covered
    Jan 1, 2020 - Jan 1, 2024
    Area covered
    Earth
    Description

    The Google Satellite Embedding dataset is a global, analysis-ready collection of learned geospatial embeddings. Each 10-meter pixel in this dataset is a 64-dimensional representation, or "embedding vector," that encodes temporal trajectories of surface conditions at and around that pixel as measured by various Earth observation instruments and datasets, over a …

  9. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  10. d

    Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina...

    • datasets.ai
    • s.cnmilf.com
    • +1more
    33, 57
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) (NPS, GRD, GRI, CALO, CALO_geomorphology digital map) adapted from North Carolina Geological Survey unpublished digital data and maps by Coffey and Nickerson (2008) [Dataset]. https://datasets.ai/datasets/digital-geomorphic-gis-map-of-cape-lookout-national-seashore-north-carolina-1-24000-scale-
    Explore at:
    33, 57Available download formats
    Dataset updated
    Sep 11, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Cape Lookout, North Carolina
    Description

    The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  11. A global snapshot of the spatial and temporal distribution of very high...

    • doi.pangaea.de
    html, tsv
    Updated Jan 30, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Myroslava Lesiv; Linda See; Juan-Carlos Laso-Bayas; Dmitry Schepaschenko; Inian Moorthy; Tobias Sturn; Mathias Karner; Ian McCallum; Steffen Fritz (2018). A global snapshot of the spatial and temporal distribution of very high resolution satellite imagery in Google Earth and Bing Maps as of 11th of January, 2017 [Dataset]. http://doi.org/10.1594/PANGAEA.885767
    Explore at:
    tsv, htmlAvailable download formats
    Dataset updated
    Jan 30, 2018
    Dataset provided by
    PANGAEA
    Authors
    Myroslava Lesiv; Linda See; Juan-Carlos Laso-Bayas; Dmitry Schepaschenko; Inian Moorthy; Tobias Sturn; Mathias Karner; Ian McCallum; Steffen Fritz
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1930 - Jan 1, 2016
    Area covered
    Variables measured
    Index, Number, LATITUDE, DATE/TIME, LONGITUDE, Identification
    Description

    Very high resolution (VHR) satellite imagery from Google Earth and Microsoft Bing Maps is increasingly being used in a variety of applications from computer sciences to arts and humanities. In the field of remote sensing, one use of this imagery is to create reference data sets through visual interpretation, e.g., to complement existing training data or to aid in the validation of land-cover products. Through new applications such as Collect Earth, this imagery is also being used for monitoring purposes in the form of statistical surveys obtained through visual interpretation. However, little is known about where VHR satellite imagery exists globally or the dates of the imagery. Here we present a global overview of the spatial and temporal distribution of VHR satellite imagery in Google Earth and Microsoft Bing Maps. The results show an uneven availability globally, with biases in certain areas such as the USA, Europe and India, and with clear discontinuities at political borders. We also show that the availability of VHR imagery is currently not adequate for monitoring protected areas and deforestation, but is better suited for monitoring changes in cropland or urban areas using visual interpretation

  12. d

    Data from: Monitoring the storage volume of water reservoirs using Google...

    • search.dataone.org
    • beta.hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joaquim Condeça; João Nascimento; Nuno Barreiras (2022). Monitoring the storage volume of water reservoirs using Google Earth Engine [Dataset]. http://doi.org/10.4211/hs.4fe324512fa34b2884a1b5c32b70e2c7
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Joaquim Condeça; João Nascimento; Nuno Barreiras
    Time period covered
    Jan 1, 1984 - Dec 31, 2019
    Area covered
    Description

    Recently, the satellite images have been used in remote sensing allowing observations with high temporal and spatial distribution. The use of water indices has proved to be an effective methodology in the monitoring of surface water resources. However, precise or automatic methodologies using satellite imagery to determine reservoir volumes are lacking. To fulfil that gap, this methodology proposes 3 stages: use Google Earth Engine (GEE) to select images; automatically calculate flooded surface areas applying water indices; determine the volume stored in reservoirs over those years based on the relation between the flooded area and the stored volume. The method was applied in four reservoirs and contemplate Landsat 4 and 5 ETM and Landsat 8 OLI. For the calculation of the flooded area the NDWI Indexes (McFeeters, 1996; Gao, 1996), and the MNDWI index (Xu, 2006) were applied and tested. The estimation of stored volume of water was made based on the area indices and a cross-check between real stored volume and calculated volume was made. Finally, an analysis on the selection of the best fit water indices was made. The results of every case studies herein displayed showed a quantifiable proficiency and reliability for quite a varied natural conditions. As a conclusion, this methodology could be seen as a tool for water resources management in developing countries, and not only, to measure automatically trends of stored volumes and its relation with the precipitation, and could eventually be extended to other types of surface water bodies, as lakes and coastal lagoons.

  13. GEODATA TOPO 250K Series 3 (Google Earth format)

    • researchdata.edu.au
    • ecat.ga.gov.au
    Updated 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEODATA (2007). GEODATA TOPO 250K Series 3 (Google Earth format) [Dataset]. https://researchdata.edu.au/geodata-topo-250k-earth-format/3407928
    Explore at:
    Dataset updated
    2007
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Authors
    GEODATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    http://creativecommons.org/licenses/http://creativecommons.org/licenses/

    Area covered
    Description

    PLEASE NOTE: These data do not include data over Tasmania. Please see links relevant to that area.

    GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs supplied in KML format and is designed for use in a range of commercial GIS software. Data is arranged within specific themes. All data is based on the GDA94 coordinate system.

    GEODATA TOPO 250K Series 3 is available as a free download product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in kml format for use on Google Earth TM Mapping Service.

    Product Specifications

    Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation

    Coverage: National (Powerlines not available in South Australia)

    Currency: Data has a currency of less than five years for any location

    Coordinates: Geographical

    Datum: Geocentric Datum of Australia (GDA94)

    Formats: Personal Geodatabase, kml, Shapefile and MapInfo TAB

    Release Date: 26 June 2006

  14. P

    AID Dataset

    • paperswithcode.com
    Updated Jun 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gui-Song Xia; Jingwen Hu; Fan Hu; Baoguang Shi; Xiang Bai; Yanfei Zhong; Liangpei Zhang (2024). AID Dataset [Dataset]. https://paperswithcode.com/dataset/aid
    Explore at:
    Dataset updated
    Jun 16, 2024
    Authors
    Gui-Song Xia; Jingwen Hu; Fan Hu; Baoguang Shi; Xiang Bai; Yanfei Zhong; Liangpei Zhang
    Description

    AID is a new large-scale aerial image dataset, by collecting sample images from Google Earth imagery. Note that although the Google Earth images are post-processed using RGB renderings from the original optical aerial images, it has proven that there is no significant difference between the Google Earth images with the real optical aerial images even in the pixel-level land use/cover mapping. Thus, the Google Earth images can also be used as aerial images for evaluating scene classification algorithms.

    The new dataset is made up of the following 30 aerial scene types: airport, bare land, baseball field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial, meadow, medium residential, mountain, park, parking, playground, pond, port, railway station, resort, river, school, sparse residential, square, stadium, storage tanks and viaduct. All the images are labelled by the specialists in the field of remote sensing image interpretation, and some samples of each class are shown in Fig.1. In all, the AID dataset has a number of 10000 images within 30 classes.

    The images in AID are actually multi-source, as Google Earth images are from different remote imaging sensors. This brings more challenges for scene classification than the single source images like UC-Merced dataset. Moreover, all the sample images per each class in AID are carefully chosen from different countries and regions around the world, mainly in China, the United States, England, France, Italy, Japan, Germany, etc., and they are extracted at different time and seasons under different imaging conditions, which increases the intra-class diversities of the data.

  15. d

    Google Earth Engine Burnt Area Map (GEEBAM)

    • data.gov.au
    html, pdf, wms, zip
    Updated Jan 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Planning, Industry and Environment (2021). Google Earth Engine Burnt Area Map (GEEBAM) [Dataset]. https://data.gov.au/dataset/ds-nsw-60fe872a-daf7-49d4-8a54-49ee414aaed2
    Explore at:
    zip, pdf, wms, htmlAvailable download formats
    Dataset updated
    Jan 9, 2021
    Dataset provided by
    Department of Planning, Industry and Environment
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PLEASE NOTE: _ GEEBAM is an interim product and there is no ground truthing or assessment of accuracy. Fire Extent and Severity Mapping (FESM) data should be used for accurate information on fire …Show full descriptionPLEASE NOTE: _ GEEBAM is an interim product and there is no ground truthing or assessment of accuracy. Fire Extent and Severity Mapping (FESM) data should be used for accurate information on fire severity and loss of biomass in relation to bushfires._ The intention of this dataset was to provide a rapid assessment of fire impact. In collaboration with the University of NSW, the NSW Department of Planning Infrastructure and Environment (DPIE) Remote Sensing and Landscape Science team has developed a rapid mapping approach to find out where wildfires in NSW have affected vegetation. We call it the Google Earth Engine Burnt Area Map (GEEBAM) and it relies on Sentinel 2 satellite imagery. The product output is a TIFF image with a resolution of 15m. Burnt Area Classes: Little change observed between pre and post fire Canopy unburnt - A green canopy within the fire ground that may act as refugia for native fauna, may be affected by fire Canopy partially affected - A mix of burnt and unburnt canopy vegetation Canopy fully affected -The canopy and understorey are most likely burnt Using GEEBAM at a local scale requires visual interpretation with reference to satellite imagery. This will ensure the best results for each fire or vegetation class. Important Note: GEEBAM is an interim product and there is no ground truthing or assessment of accuracy. It is updated fortnightly. Please see Google Earth Engine Burnt Area Factsheet

  16. Z

    Super resolution enhancement of Landsat imagery and detections of...

    • data.niaid.nih.gov
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethan D. Kyzivat (2024). Super resolution enhancement of Landsat imagery and detections of high-latitude lakes [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7306218
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset authored and provided by
    Ethan D. Kyzivat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This archive contains native resolution and super resolution (SR) Landsat imagery, derivative lake shorelines, and previously-published lake shorelines derived airborne remote sensing, used here for comparison. Landsat images are from 1985 (Landsat 5) and 2017 (Landsat 8) and are cropped to study areas used in the corresponding paper and converted to 8-bit format. SR images were created using the model of Lezine et al (2021a, 2021b), which outputs imagery at 10x-finer resolution, and they have the same extent and bit depth as the native resolution scenes included. Reference shoreline datasets are from Kyzivat et al. (2019a and 2019b) for the year 2017 and Walter Anthony et al. (2021a, 2021b) for Fairbanks, AK, USA in 1985. All derived and comparison shoreline datasets are cropped to the same extent, filtered to a common minimum lake size (40 m2 for 2017; 13 m2 for 1985), and smoothed via 10 m morphological closing. The SR-derived lakes were determined to have F-1 scores of 0.75 (2017 data) and 0.60 (1985 data) as compared to reference lakes for lakes larger than 500 m2, and accuracy is worse for smaller lakes. More details are in the forthcoming accompanying publication.

    All raster images are in cloud-optimized geotiff (COG) format (.tif) with file naming shown in Table 1. Vector shoreline datasets are in ESRI shapefile format (.shp, .dbf, etc.), and file names use the abbreviations LR for low resolution, SR for high resolution, and GT for “ground truth” comparison airborne-derived datasets.

    Landsat-5 and Landsat-8 images courtesy of the U.S. Geological Survey

    For an interactive map demo of these datasets via Google Earth Engine Apps, visit: https://ekyzivat.users.earthengine.app/view/super-resolution-demo

    Table 1: File naming scheme based on region, with some regions requiring two-scene mosaics.

    Region

    Landsat ID

    Mosaic name

    Yukon Flats Basin

    LC08_L2SP_068014_20170708_20200903_02_T1

    LC08_20170708_yflats_cog.tif

    LC08_L2SP_068013_20170708_20201015_02_T1

    Old Crow Flats

    LC08_L2SP_067012_20170903_20200903_02_T1

    -

    Mackenzie River Delta

    LC08_L2SP_064011_20170728_20200903_02_T1

    LC08_20170728_inuvik_cog.tif

    LC08_L2SP_064012_20170728_20200903_02_T1

    Canadian Shield Margin

    LC08_L2SP_050015_20170811_20200903_02_T1

    LC08_20170811_cshield-margin_cog.tif

    LC08_L2SP_048016_20170829_20200903_02_T1

    Canadian Shield near Baker Creek

    LC08_L2SP_046016_20170831_20200903_02_T1

    -

    Canadian Shield near Daring Lake

    LC08_L2SP_045015_20170723_20201015_02_T1

    -

    Peace-Athabasca Delta

    LC08_L2SP_043019_20170810_20200903_02_T1

    -

    Prairie Potholes North 1

    LC08_L2SP_041021_20170812_20200903_02_T1

    LC08_20170812_potholes-north1_cog.tif

    LC08_L2SP_041022_20170812_20200903_02_T1

    Prairie Potholes North 2

    LC08_L2SP_038023_20170823_20200903_02_T1

    -

    Prairie Potholes South

    LC08_L2SP_031027_20170907_20200903_02_T1

    -

    Fairbanks

    LT05_L2SP_070014_19850831_20200918_02_T1

    -

    References:

    Kyzivat, E. D., Smith, L. C., Pitcher, L. H., Fayne, J. V., Cooley, S. W., Cooper, M. G., Topp, S. N., Langhorst, T., Harlan, M. E., Horvat, C., Gleason, C. J., & Pavelsky, T. M. (2019b). A high-resolution airborne color-infrared camera water mask for the NASA ABoVE campaign. Remote Sensing, 11(18), 2163. https://doi.org/10.3390/rs11182163

    Kyzivat, E.D., L.C. Smith, L.H. Pitcher, J.V. Fayne, S.W. Cooley, M.G. Cooper, S. Topp, T. Langhorst, M.E. Harlan, C.J. Gleason, and T.M. Pavelsky. 2019a. ABoVE: AirSWOT Water Masks from Color-Infrared Imagery over Alaska and Canada, 2017. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1707

    Ekaterina M. D. Lezine, Kyzivat, E. D., & Smith, L. C. (2021a). Super-resolution surface water mapping on the Canadian shield using planet CubeSat images and a generative adversarial network. Canadian Journal of Remote Sensing, 47(2), 261–275. https://doi.org/10.1080/07038992.2021.1924646

    Ekaterina M. D. Lezine, Kyzivat, E. D., & Smith, L. C. (2021b). Super-resolution surface water mapping on the canadian shield using planet CubeSat images and a generative adversarial network. Canadian Journal of Remote Sensing, 47(2), 261–275. https://doi.org/10.1080/07038992.2021.1924646

    Walter Anthony, K.., Lindgren, P., Hanke, P., Engram, M., Anthony, P., Daanen, R. P., Bondurant, A., Liljedahl, A. K., Lenz, J., Grosse, G., Jones, B. M., Brosius, L., James, S. R., Minsley, B. J., Pastick, N. J., Munk, J., Chanton, J. P., Miller, C. E., & Meyer, F. J. (2021a). Decadal-scale hotspot methane ebullition within lakes following abrupt permafrost thaw. Environ. Res. Lett, 16, 35010. https://doi.org/10.1088/1748-9326/abc848

    Walter Anthony, K., and P. Lindgren. 2021b. ABoVE: Historical Lake Shorelines and Areas near Fairbanks, Alaska, 1949-2009. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1859

  17. R

    Ships Google Earth Dataset

    • universe.roboflow.com
    zip
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    K. Stavrakakis (2022). Ships Google Earth Dataset [Dataset]. https://universe.roboflow.com/k--stavrakakis/ships-google-earth
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 4, 2022
    Dataset authored and provided by
    K. Stavrakakis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Ships Bounding Boxes
    Description

    Ships Google Earth

    ## Overview
    
    Ships Google Earth is a dataset for object detection tasks - it contains Ships annotations for 794 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  18. S

    Google Maps Statistics By Region, Demographics And Facts (2025)

    • sci-tech-today.com
    Updated May 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sci-Tech Today (2025). Google Maps Statistics By Region, Demographics And Facts (2025) [Dataset]. https://www.sci-tech-today.com/stats/google-maps-statistics-updated/
    Explore at:
    Dataset updated
    May 14, 2025
    Dataset authored and provided by
    Sci-Tech Today
    License

    https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Google Maps statistics:Â Google Maps, launched in 2005, has evolved from a basic navigation tool into a comprehensive platform integral to daily life. As of October 2024, it surpassed 2 billion monthly active users, making it one of the most widely used applications globally. The platform hosts over 200 million businesses and places, with more than 120 million Local Guides contributing daily through reviews, photos, and updates.

    Users collectively contribute over 20 million pieces of information daily, enhancing the map's accuracy and utility. In 2023, Google Maps generated approximately USD 11.1 billion in revenue, primarily from advertising and API services. The platform's extensive reach and user engagement underscore its pivotal role in modern navigation and local discovery.

    In the following article, we shall study the essential Google Maps statistics related to the application, which will help illustrate the immensity of its operations.

  19. c

    Google Maps vs Traditional SEO ROI Study Data

    • caseysseo.com
    jsonld
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Casey's SEO (2025). Google Maps vs Traditional SEO ROI Study Data [Dataset]. https://caseysseo.com/google-maps-vs-traditional-seo
    Explore at:
    jsonldAvailable download formats
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    Casey's SEO
    Variables measured
    Conversion Rate Comparison, Google Maps ROI Performance, Implementation Cost Analysis, Timeline to Results Analysis, Traditional SEO ROI Performance
    Description

    Comprehensive dataset analyzing ROI performance comparison between Google Maps optimization and traditional SEO for Colorado Springs businesses.

  20. f

    Understanding spatiotemporal patterns of global forest NPP using a...

    • plos.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Siyang Yin; Wenjin Wu; Xuejing Zhao; Chen Gong; Xinwu Li; Lu Zhang (2023). Understanding spatiotemporal patterns of global forest NPP using a data-driven method based on GEE [Dataset]. http://doi.org/10.1371/journal.pone.0230098
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Siyang Yin; Wenjin Wu; Xuejing Zhao; Chen Gong; Xinwu Li; Lu Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spatiotemporal patterns of global forest net primary productivity (NPP) are pivotal for us to understand the interaction between the climate and the terrestrial carbon cycle. In this study, we use Google Earth Engine (GEE), which is a powerful cloud platform, to study the dynamics of the global forest NPP with remote sensing and climate datasets. In contrast with traditional analyses that divide forest areas according to geographical location or climate types to retrieve general conclusions, we categorize forest regions based on their NPP levels. Nine categories of forests are obtained with the self-organizing map (SOM) method, and eight relative factors are considered in the analysis. We found that although forests can achieve higher NPP with taller, denser and more broad-leaved trees, the influence of the climate is stronger on the NPP; for the high-NPP categories, precipitation shows a weak or negative correlation with vegetation greenness, while lacking water may correspond to decrease in productivity for low-NPP categories. The low-NPP categories responded mainly to the La Niña event with an increase in the NPP, while the NPP of the high-NPP categories increased at the onset of the El Niño event and decreased soon afterwards when the warm phase of the El Niño-Southern Oscillation (ENSO) wore off. The influence of the ENSO changes correspondingly with different NPP levels, which infers that the pattern of climate oscillation and forest growth conditions have some degree of synchronization. These findings may facilitate the understanding of global forest NPP variation from a different perspective.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
AmeriGEOSS (2018). Google Earth Engine (GEE) [Dataset]. https://hub.arcgis.com/items/bb1b131beda24006881d1ab019205277

Data from: Google Earth Engine (GEE)

Related Article
Explore at:
Dataset updated
Nov 28, 2018
Dataset authored and provided by
AmeriGEOSS
Description

Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE

Search
Clear search
Close search
Google apps
Main menu