35 datasets found
  1. Largest cities in South Africa 2023

    • statista.com
    Updated Jun 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Largest cities in South Africa 2023 [Dataset]. https://www.statista.com/statistics/1127496/largest-cities-in-south-africa/
    Explore at:
    Dataset updated
    Jun 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    South Africa
    Description

    South Africa is the sixth African country with the largest population, counting approximately 60.5 million individuals as of 2021. In 2023, the largest city in South Africa was Cape Town. The capital of Western Cape counted 3.4 million inhabitants, whereas South Africa's second largest city was Durban (eThekwini Municipality), with 3.1 million inhabitants. Note that when observing the number of inhabitants by municipality, Johannesburg is counted as largest city/municipality of South Africa.

    From four provinces to nine provinces

    Before Nelson Mandela became president in 1994, the country had four provinces, Cape of Good Hope, Natal, Orange Free State, and Transvaal and 10 “homelands” (also called Bantustans). The four larger regions were for the white population while the homelands for its black population. This system was dismantled following the new constitution of South Africa in 1996 and reorganized into nine provinces. Currently, Gauteng is the most populated province with around 15.9 million people residing there, followed by KwaZulu-Natal with 11.68 million inhabiting the province. As of 2022, Black African individuals were almost 81 percent of the total population in the country, while colored citizens followed amounting to around 5.34 million.

    A diverse population

    Although the majority of South Africans are identified as Black, the country’s population is far from homogenous, with different ethnic groups usually residing in the different “homelands”. This can be recognizable through the various languages used to communicate between the household members and externally. IsiZulu was the most common language of the nation with around a quarter of the population using it in- and outside of households. IsiXhosa and Afrikaans ranked second and third with roughly 15 percent and 12 percent, respectively.

  2. Largest cities in Africa 2024, by number of inhabitants

    • statista.com
    Updated May 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest cities in Africa 2024, by number of inhabitants [Dataset]. https://www.statista.com/statistics/1218259/largest-cities-in-africa/
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    Lagos, in Nigeria, ranked as the most populated city in Africa as of 2024, with an estimated population of roughly nine million inhabitants living in the city proper. Kinshasa, in Congo, and Cairo, in Egypt, followed with some 7.8 million and 7.7 million dwellers. Among the 15 largest cities in the continent, another two, Kano, and Ibadan, were located in Nigeria, the most populated country in Africa. Population density trends in Africa As of 2022, Africa exhibited a population density of 48.3 individuals per square kilometer. At the beginning of 2000, the population density across the continent has experienced a consistent annual increment. Projections indicated that the average population residing within each square kilometer would rise to approximately 54 by the year 2027. Moreover, Mauritius stood out as the African nation with the most elevated population density, exceeding 640 individuals per square kilometre. Mauritius possesses one of the most compact territories on the continent, a factor that significantly influences its high population density. Urbanization dynamics in Africa The urbanization rate in Africa was anticipated to reach close to 44 percent in 2021. Urbanization across the continent has consistently risen since 2000, with urban areas accommodating 35 percent of the total population. This trajectory is projected to continue its ascent in the years ahead. Nevertheless, the distribution between rural and urban populations shows remarkable diversity throughout the continent. In 2021, Gabon and Libya stood out as Africa’s most urbanized nations, each surpassing 80 percent urbanization. In 2023, Africa's population was estimated to expand by 2.35 percent compared to the preceding year. Since 2000, the population growth rate across the continent has consistently exceeded 2.45 percent, reaching its pinnacle at 2.59 percent between 2012 and 2013. Although the growth rate has experienced a deceleration, Africa's population will persistently grow significantly in the forthcoming years.

  3. S

    South Africa ZA: Population in Largest City: as % of Urban Population

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). South Africa ZA: Population in Largest City: as % of Urban Population [Dataset]. https://www.ceicdata.com/en/south-africa/population-and-urbanization-statistics/za-population-in-largest-city-as--of-urban-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    South Africa
    Variables measured
    Population
    Description

    South Africa ZA: Population in Largest City: as % of Urban Population data was reported at 26.327 % in 2017. This records an increase from the previous number of 26.291 % for 2016. South Africa ZA: Population in Largest City: as % of Urban Population data is updated yearly, averaging 23.218 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 26.327 % in 2017 and a record low of 18.806 % in 1991. South Africa ZA: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s South Africa – Table ZA.World Bank: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted Average;

  4. Wealthiest cities in Africa 2021

    • statista.com
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Wealthiest cities in Africa 2021 [Dataset]. https://www.statista.com/statistics/1182866/major-cities-in-africa-by-total-private-wealth/
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2021
    Area covered
    Africa
    Description

    Johannesburg was the wealthiest city in Africa as of 2021. South Africa's biggest city held 239 billion U.S. dollars in private wealth, while Cape Town followed with 131 billion U.S. dollars. The country led the ranking of wealthiest nations in Africa. The wealth value referred to assets such as cash, properties, and business interests held by individuals living in each country, less liabilities. Moreover, government funds were excluded.

  5. i

    World Values Survey 2001 - South Africa

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hennie Kotzé (2019). World Values Survey 2001 - South Africa [Dataset]. http://catalog.ihsn.org/catalog/6301
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset provided by
    Hennie Kotzé
    Mari Harris
    Time period covered
    2001
    Area covered
    South Africa
    Description

    Abstract

    The World Values Survey aims to attain a broad understanding of socio-political trends (i.e. perceptions, behaviour and expectations) among adults across the world.

    Geographic coverage

    National The sample was distributed as follows: 60% metropolitan (large cities with populations of 250 000+); 40% non-metropolitan (including cities, large towns, small towns, villages and rural areas)

    Analysis unit

    Individual

    Universe

    The sample included adults 16 years+ in South Africa

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample had to be representative of urban as well as rural populations. Roughly the distribution was as follows: - South Africa: 60% metropolitan (large cities with populations of 250 000+); 40% non-metropolitan (including cities, large towns, small towns, villages and rural areas).

    A standard form of sampling instructions was sent to each agency to ensure uniformity in the sampling procedure. Markinor stratified the samples for each country by region, sex and community size. To this end, statistics and figures that were supplied to us by the agencies were used. However, we requested the agencies to revise these where necessary or where alternatives would be more effective. The agencies then supplied the street names for the urban starting points, and made suggestions for sampling procedures in rural areas where neither maps nor street names were available. From sample-point level, the respondent selection was done randomly according to a selection grid used by Markinor (the first two pages of the master questionnaire).

    Substitution was permitted after three unsuccessful calls. Six interviews were conducted at each sample point. The male/female split was 50/50. The urban sample included all community sizes greater than 500 and the rural sample all community sizes less than 500. This is the definition of urban and rural used in South Africa.

    Remarks about sampling: -Final numbers of clusters or sampling points: 500 -Sample unit from office sampling: Street Names

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The WVS questionnaire was translated from the English questionnaire by a specialist translator The translated questionnaire was pre-tested. The pre-tests were part of the general pilots. In total 20 pilots were conducted. The English questionnaire from the University of Michigan was used to make the WVS. Extra questions were added at the end of the questionnaire. Also, country specific questions were included at the end of the questionnaire, just before the demographics.The sample was designed to be representative of the entire adult population, i.e. 18 years and older, of your country. The lower age cut-off for the sample was 16 and there was not any upper age cut-off for the sample.

    Cleaning operations

    Some measures of coding reliability were employed. Each questionnaire is coded against the coding frame. A minimum of 10% of each coders work is checked to ensure consistency in interpretation. If any discrepancies in interpretation are World Values Survey (1999-2004) - South Africa 2001 v.2015.04.18 discovered, a 100% check is carried out on that particular coders work. Errors were corrected individually and automatically.

    Sampling error estimates

    The error margins for this survey can be calculated by taking the following factors into account: - all samples were random (as opposed to quota-controlled) - the sample size per country (or segment being analysed) - the substitution rate per country (or segment being analysed) - the rates were recorded on CARD 1; col. 805 of the questionnaire. From the substitution rate, the response rate can be calculated.

  6. Total population of South Africa 2023, by province

    • statista.com
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total population of South Africa 2023, by province [Dataset]. https://www.statista.com/statistics/1112169/total-population-of-south-africa-by-province/
    Explore at:
    Dataset updated
    Oct 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    South Africa
    Description

    As of 2023, South Africa's population increased and counted approximately 62.3 million inhabitants in total, of which the majority inhabited Gauteng, KwaZulu-Natal, and the Western-Eastern Cape. Gauteng (includes Johannesburg) is the smallest province in South Africa, though highly urbanized with a population of over 16 million people according to the estimates. Cape Town, on the other hand, is the largest city in South Africa with nearly 3.43 million inhabitants in the same year, whereas Durban counted 3.12 million citizens. However, looking at cities including municipalities, Johannesburg ranks first. High rate of young population South Africa has a substantial population of young people. In 2024, approximately 34.3 percent of the people were aged 19 years or younger. Those aged 60 or older, on the other hand, made-up over 10 percent of the total population. Distributing South African citizens by marital status, approximately half of the males and females were classified as single in 2021. Furthermore, 29.1 percent of the men were registered as married, whereas nearly 27 percent of the women walked down the aisle. Youth unemployment Youth unemployment fluctuated heavily between 2003 and 2022. In 2003, the unemployment rate stood at 36 percent, followed by a significant increase to 45.5 percent in 2010. However, it fluctuated again and as of 2022, over 51 percent of the youth were registered as unemployed. Furthermore, based on a survey conducted on the worries of South Africans, some 64 percent reported being worried about employment and the job market situation.

  7. Most dangerous cities in Africa 2024

    • statista.com
    Updated Nov 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Most dangerous cities in Africa 2024 [Dataset]. https://www.statista.com/statistics/1328901/cities-with-highest-crime-index-in-africa/
    Explore at:
    Dataset updated
    Nov 19, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    In 2024, Pietermaritzburg (South Africa) ranked first in the crime index among African cities, with a rating of roughly 83 index points. The six most dangerous areas on the continent were South African cities. The index estimates the overall level of crime in a specific territory. According to the score, crime levels are classified as very high (over 80), high (60-80), moderate (40-60), low (20-40), and very low (below 20). South Africa’s crime situation According to the crime index ranking, South Africa was the most dangerous country in Africa in 2023, followed by Somalia, Nigeria, and Angola. Murder and organized crime are particularly widespread in South Africa. In 2023, the country had one of the highest murder rates globally, registering around 36 homicides per 100,000 inhabitants. Moreover, South Africa’s crime scene is also characterized by the presence of organized criminal activities, for which the country ranked third in Africa. Reflecting these high levels of crime, a survey conducted in 2023 showed that around 56 percent of South Africans were worried about crime and violence in the country. Crime risks in Africa The African continent hosts some of the most dangerous places worldwide. In 2023, South Sudan and the Democratic Republic of the Congo were the least peaceful countries in Africa, according to the Global Peace Index. Worldwide, they ranked fourth and fifth, respectively, behind Afghanistan, Yemen, and Syria. Terrorism is a leading type of crime perpetrated in Africa. Home to Boko Aram, Nigeria is among the countries with the highest number of terrorism-related deaths globally. Furthermore, Burkina Faso had the highest number of fatalities in the world. Human trafficking is also widespread, predominantly in West Africa. The most common forms of exploitation of victims of trafficking in persons are forced labor and sexual exploitation.

  8. Migration Household Survey 2009 - South Africa

    • microdata.worldbank.org
    • dev.ihsn.org
    • +2more
    Updated Jun 3, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Human Sciences Research Council (HSRC) (2019). Migration Household Survey 2009 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/96
    Explore at:
    Dataset updated
    Jun 3, 2019
    Dataset provided by
    Human Sciences Research Councilhttps://hsrc.ac.za/
    Authors
    Human Sciences Research Council (HSRC)
    Time period covered
    2009
    Area covered
    South Africa
    Description

    Abstract

    The Human Sciences Research Council (HSRC) carried out the Migration and Remittances Survey in South Africa for the World Bank in collaboration with the African Development Bank. The primary mandate of the HSRC in this project was to come up with a migration database that includes both immigrants and emigrants. The specific activities included: · A household survey with a view of producing a detailed demographic/economic database of immigrants, emigrants and non migrants · The collation and preparation of a data set based on the survey · The production of basic primary statistics for the analysis of migration and remittance behaviour in South Africa.

    Like many other African countries, South Africa lacks reliable census or other data on migrants (immigrants and emigrants), and on flows of resources that accompanies movement of people. This is so because a large proportion of African immigrants are in the country undocumented. A special effort was therefore made to design a household survey that would cover sufficient numbers and proportions of immigrants, and still conform to the principles of probability sampling. The approach that was followed gives a representative picture of migration in 2 provinces, Limpopo and Gauteng, which should be reflective of migration behaviour and its impacts in South Africa.

    Geographic coverage

    Two provinces: Gauteng and Limpopo

    Limpopo is the main corridor for migration from African countries to the north of South Africa while Gauteng is the main port of entry as it has the largest airport in Africa. Gauteng is a destination for internal and international migrants because it has three large metropolitan cities with a great economic potential and reputation for offering employment, accommodations and access to many different opportunities within a distance of 56 km. These two provinces therefore were expected to accommodate most African migrants in South Africa, co-existing with a large host population.

    Analysis unit

    • Household
    • Individual

    Universe

    The target group consists of households in all communities. The survey will be conducted among metro and non-metro households. Non-metro households include those in: - small towns, - secondary cities, - peri-urban settlements and - deep rural areas. From each selected household, one adult respondent will be selected to participate in the study.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Migration data for South Africa are available for 2007 only at the level of local governments or municipalities from the 2007 Census; for smaller areas called "sub places" (SPs) only as recently as the 2001 census, and for the desired EAs only back so far as the Census of 1996. In sum, there was no single source that provided recent data on the five types of migrants of principal interest at the level of the Enumeration Area, which was the area for which data were needed to draw the sample since it was going to be necessary to identify migrant and non-migrant households in the sample areas in order to oversample those with migrants for interview.

    In an attempt to overcome the data limitations referred to above, it was necessary to adopt a novel approach to the design of the sample for the World Bank's household migration survey in South Africa, to identify EAs with a high probability of finding immigrants and those with a low probability. This required the combined use of the three sources of data described above. The starting point was the CS 2007 survey, which provided data on migration at a local government level, classifying each local government cluster in terms of migration level, taking into account the types of migrants identified. The researchers then spatially zoomed in from these clusters to the so-called sub-places (SPs) from the 2001 Census to classifying SP clusters by migration level. Finally, the 1996 Census data were used to zoom in even further down to the EA level, using the 1996 census data on migration levels of various typed, to identify the final level of clusters for the survey, namely the spatially small EAs (each typically containing about 200 households, and hence amenable to the listing operation in the field).

    A higher score or weight was attached to the 2007 Community Survey municipality-level (MN) data than to the Census 2001 sub-place (SP) data, which in turn was given a greater weight than the 1996 enumerator area (EA) data. The latter was derived exclusively from the Census 1996 EA data, but has then been reallocated to the 2001 EAs proportional to geographical size. Although these weights are purely arbitrary since it was composed from different sources, they give an indication of the relevant importance attached to the different migrant categories. These weighted migrant proportions (secondary strata), therefore constituted the second level of clusters for sampling purposes.

    In addition, a system of weighting or scoring the different persons by migrant type was applied to ensure that the likelihood of finding migrants would be optimised. As part of this procedure, recent migrants (who had migrated in the preceding five years) received a higher score than lifetime migrants (who had not migrated during the preceding five years). Similarly, a higher score was attached to international immigrants (both recent and lifetime, who had come to SA from abroad) than to internal migrants (who had only moved within SA's borders). A greater weight also applied to inter-provincial (internal) than to intra-provincial migrants (who only moved within the same South African province).

    How the three data sources were combined to provide overall scores for EA can be briefly described. First, in each of the two provinces, all local government units were given migration scores according to the numbers or relative proportions of the population classified in the various categories of migrants (with non-migrants given a score of 1.0. Migrants were assigned higher scores according to their priority, with international migrants given higher scores than internal migrants and recent migrants higher scores than lifetime migrants. Then within the local governments, sub-places were assigned scores assigned on the basis of inter vs. intra-provincial migrants using the 2001 census data. Each SP area in a local government was thus assigned a value which was the product of its local government score (the same for all SPs in the local government) and its own SP score. The third and final stage was to develop relative migration scores for all the EAs from the 1996 census by similarly weighting the proportions of migrants (and non-migrants, assigned always 1.0) of each type. The the final migration score for an EA is the product of its own EA score from 1996, the SP score of which it is a part (assigned to all the EAs within the SP), and the local government score from the 2007 survey.

    Based on all the above principles the set of weights or scores was developed.

    In sum, we multiplied the proportion of populations of each migrant type, or their incidence, by the appropriate final corresponding EA scores for persons of each type in the EA (based on multiplying the three weights together), to obtain the overall score for each EA. This takes into account the distribution of persons in the EA according to migration status in 1996, the SP score of the EA in 2001, and the local government score (in which the EA is located) from 2007. Finally, all EAs in each province were then classified into quartiles, prior to sampling from the quartiles.

    From the EAs so classified, the sampling took the form of selecting EAs, i.e., primary sampling units (PSUs, which in this case are also Ultimate Sampling Units, since this is a single stage sample), according to their classification into quartiles. The proportions selected from each quartile are based on the range of EA-level scores which are assumed to reflect weighted probabilities of finding desired migrants in each EA. To enhance the likelihood of finding migrants, much higher proportions of EAs were selected into the sample from the quartiles with the higher scores compared to the lower scores (disproportionate sampling). The decision on the most appropriate categorisations was informed by the observed migration levels in the two provinces of the study area during 2007, 2001 and 1996, analysed at the lowest spatial level for which migration data was available in each case.

    Because of the differences in their characteristics it was decided that the provinces of Gauteng and Limpopo should each be regarded as an explicit stratum for sampling purposes. These two provinces therefore represented the primary explicit strata. It was decided to select an equal number of EAs from these two primary strata.

    The migration-level categories referred to above were treated as secondary explicit strata to ensure optimal coverage of each in the sample. The distribution of migration levels was then used to draw EAs in such a way that greater preference could be given to areas with higher proportions of migrants in general, but especially immigrants (note the relative scores assigned to each type of person above). The proportion of EAs selected into the sample from the quartiles draws upon the relative mean weighted migrant scores (referred to as proportions) found below the table, but this is a coincidence and not necessary, as any disproportionate sampling of EAs from the quartiles could be done, since it would be rectified in the weighting at the end for the analysis.

    The resultant proportions of migrants then led to the following proportional allocation of sampled EAs (Quartile 1: 5 per cent (instead of 25% as in an equal distribution), Quartile 2: 15 per cent (instead

  9. Total population of South Africa 2024, by age group

    • statista.com
    Updated Mar 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of South Africa 2024, by age group [Dataset]. https://www.statista.com/statistics/1116077/total-population-of-south-africa-by-age-group/
    Explore at:
    Dataset updated
    Mar 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    South Africa
    Description

    As of 2024, South Africa's population increased, counting approximately 63 million inhabitants. Of these, roughly 27.5 million were aged 0-24, while 654,000 people were 80 years or older. Gauteng and Cape Town are the most populated Although South Africa’s yearly population growth has been dropping since 2013, the growth rate still stood above the world average in 2021. That year, the global population increase reached 0.94 percent, while for South Africa, the rise was 1.23 percent. The majority of the people lived in the borders of Gauteng, the smallest of the nine provinces in land area. The number of people residing there amounted to 15.9 million in 2021. Although Western Cape was the third-largest province, one of it cities, Cape Town, had the highest number of inhabitants in the country, at 3.4 million. An underemployed younger population South Africa has a large population under 14, who will be looking for job opportunities in the future. However, the country's labor market has had difficulty integrating these youngsters. Specifically, as of the third quarter of 2022, the unemployment rate reached close to 60 percent and 42.9 percent among people aged 15-24 and 25-34 years, respectively. In the same period, some 25 percent of the individuals between 15 and 24 years were economically active, while the labor force participation rate was higher among people aged 25 to 34, at 71.2 percent.

  10. Urbanization in South Africa 2023

    • statista.com
    Updated Sep 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2019). Urbanization in South Africa 2023 [Dataset]. https://www.statista.com/statistics/455931/urbanization-in-south-africa/
    Explore at:
    Dataset updated
    Sep 14, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    South Africa
    Description

    In 2023, over 68.82 percent of South Africa's total population lived in urban areas and cities. Urbanization defines the share of urban population from the total population of a country. Just like urbanization, the population density within the nation has risen, reaching 46 inhabitants per square kilometer, meaning more people are sharing less space. Many opportunities for work and leisure can be found in the urban locations of South Africa, and as such the five largest municipalities each now have over three million residents. Facing its economic strengths and drawbacks South Africa is a leading services destination, as it is one of the most industrialized countries in the continent of Africa. The majority of the country’s gross domestic product comes from the services sector, where more than 70 percent of the employed population works. Unemployment is seen as a critical indicator of the state of an economy, and for South Africa, a high rate of over 25 percent could indicate a need for a shift in economic policy. As of 2017, South Africa was one of the twenty countries with the highest rate of unemployment in the world.

  11. w

    Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt (2023). Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/424
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt
    Time period covered
    1999 - 2000
    Area covered
    Angola
    Description

    Abstract

    Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).

    Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).

    The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.

    The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.

    The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.

    Geographic coverage

    The database covers the following countries: Afghanistan Albania Algeria Andorra Angola
    Antigua and Barbuda Argentina
    Armenia Australia
    Austria Azerbaijan
    Bahamas, The
    Bahrain Bangladesh
    Barbados
    Belarus Belgium Belize
    Benin
    Bhutan
    Bolivia Bosnia and Herzegovina
    Brazil
    Brunei
    Bulgaria
    Burkina Faso
    Burundi Cambodia
    Cameroon
    Canada
    Cayman Islands
    Central African Republic
    Chad
    Chile
    China
    Colombia
    Comoros Congo, Dem. Rep.
    Congo, Rep. Costa Rica
    Cote d'Ivoire
    Croatia Cuba
    Cyprus
    Czech Republic
    Denmark Dominica
    Dominican Republic
    Ecuador Egypt, Arab Rep.
    El Salvador Eritrea Estonia Ethiopia
    Faeroe Islands
    Fiji
    Finland France
    Gabon
    Gambia, The Georgia Germany Ghana
    Greece
    Grenada Guatemala
    Guinea
    Guinea-Bissau
    Guyana
    Haiti
    Honduras
    Hong Kong, China
    Hungary Iceland India
    Indonesia
    Iran, Islamic Rep.
    Iraq
    Ireland Israel
    Italy
    Jamaica Japan
    Jordan
    Kazakhstan
    Kenya
    Korea, Dem. Rep.
    Korea, Rep. Kuwait
    Kyrgyz Republic Lao PDR Latvia
    Lebanon Lesotho Liberia Liechtenstein
    Lithuania
    Luxembourg
    Macao, China
    Macedonia, FYR
    Madagascar
    Malawi
    Malaysia
    Maldives
    Mali
    Mauritania
    Mexico
    Moldova Mongolia
    Morocco Mozambique
    Myanmar Namibia Nepal
    Netherlands Netherlands Antilles
    New Caledonia
    New Zealand Nicaragua
    Niger
    Nigeria Norway
    Oman
    Pakistan
    Panama
    Papua New Guinea
    Paraguay
    Peru
    Philippines Poland
    Portugal
    Puerto Rico Qatar
    Romania Russian Federation
    Rwanda
    Sao Tome and Principe
    Saudi Arabia
    Senegal Sierra Leone
    Singapore
    Slovak Republic Slovenia
    Solomon Islands Somalia South Africa
    Spain
    Sri Lanka
    St. Kitts and Nevis St. Lucia
    St. Vincent and the Grenadines
    Sudan
    Suriname
    Swaziland
    Sweden
    Switzerland Syrian Arab Republic
    Tajikistan
    Tanzania
    Thailand
    Togo
    Trinidad and Tobago Tunisia Turkey
    Turkmenistan
    Uganda
    Ukraine United Arab Emirates
    United Kingdom
    United States
    Uruguay Uzbekistan
    Vanuatu Venezuela, RB
    Vietnam Virgin Islands (U.S.)
    Yemen, Rep. Yugoslavia, FR (Serbia/Montenegro)
    Zambia
    Zimbabwe

    Kind of data

    Observation data/ratings [obs]

    Mode of data collection

    Other [oth]

  12. 南非 ZA:最大城市人口:占城镇人口百分比

    • ceicdata.com
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). 南非 ZA:最大城市人口:占城镇人口百分比 [Dataset]. https://www.ceicdata.com/zh-hans/south-africa/population-and-urbanization-statistics/za-population-in-largest-city-as--of-urban-population
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    南非
    Variables measured
    Population
    Description

    ZA:最大城市人口:占城镇人口百分比在12-01-2017达26.327%,相较于12-01-2016的26.291%有所增长。ZA:最大城市人口:占城镇人口百分比数据按年更新,12-01-1960至12-01-2017期间平均值为23.218%,共58份观测结果。该数据的历史最高值出现于12-01-2017,达26.327%,而历史最低值则出现于12-01-1991,为18.806%。CEIC提供的ZA:最大城市人口:占城镇人口百分比数据处于定期更新的状态,数据来源于World Bank,数据归类于Global Database的南非 – 表 ZA.世界银行:人口和城市化进程统计。

  13. Population in Africa 2024, by selected country

    • statista.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in Africa 2024, by selected country [Dataset]. https://www.statista.com/statistics/1121246/population-in-africa-by-country/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    Nigeria has the largest population in Africa. As of 2024, the country counted over 232.6 million individuals, whereas Ethiopia, which ranked second, has around 132 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 116 million people. In terms of inhabitants per square kilometer, Nigeria only ranks seventh, while Mauritius has the highest population density on the whole African continent. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.

  14. Top 10 largest municipalities in South Africa 2016

    • statista.com
    Updated Feb 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2017). Top 10 largest municipalities in South Africa 2016 [Dataset]. https://www.statista.com/statistics/671778/top-10-largest-municipalities-in-south-africa/
    Explore at:
    Dataset updated
    Feb 10, 2017
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    South Africa
    Description

    This statistic shows the top ten largest municipalities in South Africa as of 2016. Johannesburg had the largest population of South African municipalities in 2016, with nearly 5 million inhabitants.

  15. Measuring Living Standards within Cities, Dar es Salaam 2014-2015 - Tanzania...

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). Measuring Living Standards within Cities, Dar es Salaam 2014-2015 - Tanzania [Dataset]. https://catalog.ihsn.org/index.php/catalog/7957
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2014 - 2015
    Area covered
    Tanzania
    Description

    Abstract

    The Measuring Living Standards in Cities (MLSC) survey is a new instrument designed to enhance understanding of cities in Africa and support evidence based policy design. The instrument was developed under the World Bank’s Spatial Development of African Cities Program, and was piloted in Dar es Salaam (Tanzania) and Durban (South Africa) over the course of 2014/15. These geo-referenced surveys provide information on urban living standards at an unprecedented level of granularity: they can be compared across different geographic levels within the cities, and between areas of ‘regular’ and ‘irregular’ settlement patterns. They also respond to the need to increased understanding of specifically ‘urban’ dimensions of quality of living: housing attributes, access to basic services, and commuting patterns, among others.

    Geographic coverage

    The survey covered households in Dar es Salaam, Tanzania.

    Analysis unit

    • Household

    • Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLE FRAME

    16,000 EAs generated by the Tanzania National Bureau of Statistics (NBS) for the 2012 Census.

    STAGE ONE

    200 EAs sorted into four strata. The central strata was divided into ‘central core, shanty’ and ‘central core, non-shanty’. Two EAs were replaced with reserve EAs as the original EAs were found to be inaccessible.

    STAGE TWO

    12 households randomly selected by systematic equal-probability from updated listing of each EA.

    LISTING METHODOLOGY

    The listing exercise took place between the first and the second stage of sampling. The household listing operations were implemented with computer assisted paperless interviewing (CAPI) techniques, which generates electronic files directly. Enumerators collected basic information about household: the name of the household head name, phone number and total number of household members living in the dwelling. Enumerators also recorded the GPS location of all structures,18 defined the type of structure, and aimed to provide measurement of structure size.

    Listing was preceded by community sensitisation in both cities. In Dar es Salaam, enumerators visited the local chief (Mjumbe) of their assigned EA two days in advance of listing and on the day of listing.

    Enumerators were equipped with maps created on Google My Maps to display shapefiles for the listing exercise. Hardcopies of their respective EA maps were also provided to be use in case of network failure. In Dar es Salaam, enumerators conducted a listing of all households in each of the selected EAs.

    The listing exercise was conducted by 30 enumerators, each of which was assigned between 3 and 9 EAs for listing (enumerators were selected on the basis of performance from a group of 35 that were trained for listing). Enumerators were allocated EAs based on: (i) distance from enumerators’ homes in order to minimize transport time and cost; (ii) distance between the EAs; and (iii) safety and response rate considerations.

    SURVEY IMPLEMENTATION

    The surveys were fielded over the course of several months. The Dar es Salaam survey was implemented between November 2014 and January 2015.

    Cases were assigned to interviewers using Survey Solutions. Interviewers were provided with both an electronic and hardcopy map, as well as a printed completion form, and could contact the listing manager through email, WhatsApp, or google hangouts if they were unable to find the assigned house.

    Completing the survey often required repeat visits. This is because the survey required input from up to three separate respondents: the main respondent, who could be any present household member, and answered questions on household composition, basic information on members, assets, remittances, grants, housing, properties and consumption; the household head, who answered questions on residential history, satisfaction, employment, time use and commuting; and a random respondent, who was randomly selected from household members over the age of 12 (not including the head), who responded questions on satisfaction, employment, time use and commuting. Enumerators visited each house at least twice before a component could be marked as unavailable - in many cases, however, more than two visits were conducted.

    Quality assurance procedures included: (i) In-interview feedback from CAPI, which provided a check that modules or questions were not missing, and alerted interviewers to mistakes and inconsistencies in given answers, so that these could be addressed while the interviewer was still with the respondent; (ii) Aggregate checks conducted using the Survey Solutions Supervisor application, which allows supervisors to identify common mistakes (applied to all initial interviews, and then through spot checks); interviewer performance and completion monitoring conducted by the implementing firm, through interviewer and EA level summaries of response rates, interview completion, and progress; (iii) weekly summaries of key indictors provided by the World Bank team (following each data delivery); (iv) direct observation of fieldwork; and (v) back check interviews. A key lesson learned is that the portion of back check interviews should be agreed in advance with the implementing firm: in Dar es Salaam back checks were conducted on 5% of the sample.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Response rate

    Non-response rate: 13%

  16. Total population of South Africa 2022, by ethnic groups

    • statista.com
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Total population of South Africa 2022, by ethnic groups [Dataset]. https://www.statista.com/statistics/1116076/total-population-of-south-africa-by-population-group/
    Explore at:
    Dataset updated
    Jun 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    South Africa
    Description

    As of 2022, South Africa's population increased and counted approximately 60.6 million inhabitants in total, of which the majority (roughly 49.1 million) were Black Africans. Individuals with an Indian or Asian background formed the smallest population group, counting approximately 1.56 million people overall. Looking at the population from a regional perspective, Gauteng (includes Johannesburg) is the smallest province of South Africa, though highly urbanized with a population of nearly 16 million people.

    Increase in number of households

    The total number of households increased annually between 2002 and 2022. Between this period, the number of households in South Africa grew by approximately 65 percent. Furthermore, households comprising two to three members were more common in urban areas (39.2 percent) than they were in rural areas (30.6 percent). Households with six or more people, on the other hand, amounted to 19.3 percent in rural areas, being roughly twice as common as those in urban areas.

    Main sources of income

    The majority of the households in South Africa had salaries or grants as a main source of income in 2019. Roughly 10.7 million drew their income from regular wages, whereas 7.9 million households received social grants paid by the government for citizens in need of state support.

  17. Most expensive cities to live in Africa as of 2024

    • statista.com
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most expensive cities to live in Africa as of 2024 [Dataset]. https://www.statista.com/statistics/1218516/cost-of-living-in-selected-african-cities/
    Explore at:
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    Addis Ababa, in Ethiopia, ranked as the most expensive city to live in Africa as of 2024, considering consumer goods prices. The Ethiopian capital obtained an index score of 46.7, followed by Harare, in Zimbabwe, with 37.4. Morocco and South Africa were the countries with the most representatives among the 15 cities with the highest cost of living in Africa.

  18. Leading cities for startups in Africa 2023, by total score

    • statista.com
    Updated Sep 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Leading cities for startups in Africa 2023, by total score [Dataset]. https://www.statista.com/statistics/1275285/top-cities-for-startups-in-africa/
    Explore at:
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    In 2023, according to data provided by StartupBlink, the best city for startups in Africa was Lagos, in Nigeria, with a total score of 8.23 points. The largest city in Africa and an important financial hub for Nigeria and the whole continent, Lagos ranked 82nd among 1,000 cities worldwide. Cairo, in Egypt, and Cape Town, in South Africa, followed as leading cities for startups on the African continent.

  19. Growth rate of African cities 2020-2035

    • statista.com
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Growth rate of African cities 2020-2035 [Dataset]. https://www.statista.com/statistics/1234653/africa-s-fastest-growing-cities/
    Explore at:
    Dataset updated
    Jan 31, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa
    Description

    The fastest growing city in Africa is Bujumbura, in Burundi. In 2020, this city had an estimated population of about one million. By 2035, the population of Bujumbura could increase by 123 percent and reach roughly 2.3 million people. Zinder, in Niger, had about half million inhabitants in 2020 and, with a growth rate of 118 percent, is Africa's second fastest growing city. In 2035, Zinder could have over one million residents.

    As of 2021, the largest city in whole Africa is Lagos, in Nigeria. Other highly populated cities in Africa are Kinshasa, in Congo, Cairo, and Alexandria, both located in Egypt.

  20. Urbanization in Africa 2023, by country

    • statista.com
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Urbanization in Africa 2023, by country [Dataset]. https://www.statista.com/statistics/1223543/urbanization-rate-in-africa-by-country/
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Africa
    Description

    In 2023, Gabon had the highest urbanization rate in Africa, with over 90 percent of the population living in urban areas. Libya and Djibouti followed at around 82 percent and 79 percent, respectively. On the other hand, many countries on the continent had the majority of the population residing in rural areas. As of 2023, urbanization in Malawi, Rwanda, Niger, and Burundi was below 20 percent. A growing urban population On average, the African urbanization rate stood at approximately 45 percent in 2023. The number of people living in urban areas has been growing steadily since 2000 and is forecast to increase further in the coming years. The urbanization process is being particularly rapid in Burundi, Uganda, Niger, and Tanzania. In these countries, the urban population grew by over 4.2 percent in 2020 compared to the previous year. The most populous cities in Africa Africa’s largest city is Lagos in Nigeria, counting around nine million people. It is followed by Kinshasa in the Democratic Republic of the Congo and Cairo in Egypt, each with over seven million inhabitants. Moreover, other cities on the continent are growing rapidly. The population of Bujumbura in Burundi will increase by 123 percent between 2020 and 2035, registering the highest growth rate on the continent. Other fast-growing cities are Zinder in Niger, Kampala in Uganda, and Kabinda in the Democratic Republic of the Congo.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). Largest cities in South Africa 2023 [Dataset]. https://www.statista.com/statistics/1127496/largest-cities-in-south-africa/
Organization logo

Largest cities in South Africa 2023

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 22, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2023
Area covered
South Africa
Description

South Africa is the sixth African country with the largest population, counting approximately 60.5 million individuals as of 2021. In 2023, the largest city in South Africa was Cape Town. The capital of Western Cape counted 3.4 million inhabitants, whereas South Africa's second largest city was Durban (eThekwini Municipality), with 3.1 million inhabitants. Note that when observing the number of inhabitants by municipality, Johannesburg is counted as largest city/municipality of South Africa.

From four provinces to nine provinces

Before Nelson Mandela became president in 1994, the country had four provinces, Cape of Good Hope, Natal, Orange Free State, and Transvaal and 10 “homelands” (also called Bantustans). The four larger regions were for the white population while the homelands for its black population. This system was dismantled following the new constitution of South Africa in 1996 and reorganized into nine provinces. Currently, Gauteng is the most populated province with around 15.9 million people residing there, followed by KwaZulu-Natal with 11.68 million inhabiting the province. As of 2022, Black African individuals were almost 81 percent of the total population in the country, while colored citizens followed amounting to around 5.34 million.

A diverse population

Although the majority of South Africans are identified as Black, the country’s population is far from homogenous, with different ethnic groups usually residing in the different “homelands”. This can be recognizable through the various languages used to communicate between the household members and externally. IsiZulu was the most common language of the nation with around a quarter of the population using it in- and outside of households. IsiXhosa and Afrikaans ranked second and third with roughly 15 percent and 12 percent, respectively.

Search
Clear search
Close search
Google apps
Main menu